Conditions of convergence to the Poisson distribution for the number of solutions of random inclusions
Matematičeskie voprosy kriptografii, Tome 3 (2012) no. 3, pp. 35-55 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $F$ be a random mapping of $n$-dimensional space $V^n$ over the finite field $GF(q)$ into $T$-dimensional space $V^T$ over the same field; let $D\subset V^n$, $B\subset V^T$. For the number of solutions of random inclusions $x\in D$, $F(x)\in B$ we find new sufficient conditions of weak convergence to the Poisson law as $n,T\to\infty$.
@article{MVK_2012_3_3_a2,
     author = {V. A. Kopytcev and V. G. Mikhailov},
     title = {Conditions of convergence to the {Poisson} distribution for the number of solutions of random inclusions},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {35--55},
     year = {2012},
     volume = {3},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2012_3_3_a2/}
}
TY  - JOUR
AU  - V. A. Kopytcev
AU  - V. G. Mikhailov
TI  - Conditions of convergence to the Poisson distribution for the number of solutions of random inclusions
JO  - Matematičeskie voprosy kriptografii
PY  - 2012
SP  - 35
EP  - 55
VL  - 3
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/MVK_2012_3_3_a2/
LA  - ru
ID  - MVK_2012_3_3_a2
ER  - 
%0 Journal Article
%A V. A. Kopytcev
%A V. G. Mikhailov
%T Conditions of convergence to the Poisson distribution for the number of solutions of random inclusions
%J Matematičeskie voprosy kriptografii
%D 2012
%P 35-55
%V 3
%N 3
%U http://geodesic.mathdoc.fr/item/MVK_2012_3_3_a2/
%G ru
%F MVK_2012_3_3_a2
V. A. Kopytcev; V. G. Mikhailov. Conditions of convergence to the Poisson distribution for the number of solutions of random inclusions. Matematičeskie voprosy kriptografii, Tome 3 (2012) no. 3, pp. 35-55. http://geodesic.mathdoc.fr/item/MVK_2012_3_3_a2/

[1] Kopyttsev V. A., Mikhailov V. G., “O raspredelenii chisel reshenii sluchainykh vklyuchenii”, Matematicheskie voprosy kriptografii, 2:2 (2011), 55–80

[2] Kopyttsev V. A., Mikhailov V. G., “Teoremy puassonovskogo tipa dlya chisla reshenii sluchainykh vklyuchenii”, Matematicheskie voprosy kriptografii, 1:4 (2010), 63–84

[3] Kopyttsev V. A., Mikhailov V. G., “Teoremy puassonovskogo tipa dlya chisla spetsialnykh reshenii sluchainogo lineinogo vklyucheniya”, Diskretnaya matematika, 22:2 (2010), 3–21 | DOI | MR | Zbl

[4] Mikhailov V. G., “O predelnoi teoreme B. A. Sevastyanova dlya summ zavisimykh sluchainykh indikatorov”, Obozrenie prikladnoi i promyshlennoi matematiki, 10:3 (2003), 571–578 | MR

[5] Kolchin V. F., Sevastyanov B. A., Chistyakov V. P., Sluchainye razmescheniya, Nauka, M., 1976, 224 pp. | MR | Zbl

[6] Sevastyanov B. A., “Predelnyi zakon Puassona v skheme summ zavisimykh sluchainykh velichin”, Teoriya veroyatnostei i ee primeneniya, 17:4 (1972), 733–738 | MR | Zbl

[7] Masol V. I., “Teorema o predelnom raspredelenii chisla lozhnykh reshenii sistemy nelineinykh sluchainykh uravnenii”, Teoriya veroyatnostei i ee primeneniya, 43:1 (1998), 41–56 | DOI | MR | Zbl