On the structure of solutions of nonlinear pseudo-Boolean inequalities systems
Matematičeskie voprosy kriptografii, Tome 3 (2012) no. 3, pp. 5-19
Cet article a éte moissonné depuis la source Math-Net.Ru
Random and random satisfiable systems of linear pseudo-Boolean inequalities are considered. For random systems we find algebraic conditions of satisfiability; for random satisfiable systems we find the mean number of solutions which differ from the true solution by 2 coordinates only.
@article{MVK_2012_3_3_a0,
author = {G. V. Balakin},
title = {On the structure of solutions of nonlinear {pseudo-Boolean} inequalities systems},
journal = {Matemati\v{c}eskie voprosy kriptografii},
pages = {5--19},
year = {2012},
volume = {3},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MVK_2012_3_3_a0/}
}
G. V. Balakin. On the structure of solutions of nonlinear pseudo-Boolean inequalities systems. Matematičeskie voprosy kriptografii, Tome 3 (2012) no. 3, pp. 5-19. http://geodesic.mathdoc.fr/item/MVK_2012_3_3_a0/
[1] Balakin G. V., Nikonov V. G., “Metody svedeniya bulevykh uravnenii k sistemam porogovykh sootnoshenii”, Obozr. prikl. i promyshl. matem., 1:3 (1994), 389–401 | Zbl
[2] Nikonov V. G., “Porogovye predstavleniya bulevykh funktsii”, Obozr. prikl. i promyshl. matem., 1:3 (1994), 402–457 | MR | Zbl
[3] Balakin G. V., “Ob odnom svoistve lineinykh tselochislennykh neravenstv s iskazhennoi pravoi chastyu”, Obozr. prikl. i promyshl. matem., 14:6 (2007), 1071–1072
[4] Balakin G. V., “Ob odnoi lineinoi psevdobulevoi sisteme neravenstv”, Obozr. prikl. i promyshl. matem., 15:4 (2008), 738
[5] Balakin G. V., “Lineinye psevdobulevy neravenstva”, Matematicheskie voprosy kriptografii, 1:3 (2010), 5–18