@article{MVK_2012_3_2_a3,
author = {A. B. Pichkur},
title = {Description of the set of permutations represented as a~product of two permutations with fixed number of mobile points},
journal = {Matemati\v{c}eskie voprosy kriptografii},
pages = {79--95},
year = {2012},
volume = {3},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MVK_2012_3_2_a3/}
}
TY - JOUR AU - A. B. Pichkur TI - Description of the set of permutations represented as a product of two permutations with fixed number of mobile points JO - Matematičeskie voprosy kriptografii PY - 2012 SP - 79 EP - 95 VL - 3 IS - 2 UR - http://geodesic.mathdoc.fr/item/MVK_2012_3_2_a3/ LA - ru ID - MVK_2012_3_2_a3 ER -
%0 Journal Article %A A. B. Pichkur %T Description of the set of permutations represented as a product of two permutations with fixed number of mobile points %J Matematičeskie voprosy kriptografii %D 2012 %P 79-95 %V 3 %N 2 %U http://geodesic.mathdoc.fr/item/MVK_2012_3_2_a3/ %G ru %F MVK_2012_3_2_a3
A. B. Pichkur. Description of the set of permutations represented as a product of two permutations with fixed number of mobile points. Matematičeskie voprosy kriptografii, Tome 3 (2012) no. 2, pp. 79-95. http://geodesic.mathdoc.fr/item/MVK_2012_3_2_a3/
[1] Bertram E., “Even permutations as a product of two conjugate cycles”, J. Combin. Theory A, 12:3 (1972), 368–380 | DOI | MR | Zbl
[2] Bertram E., Wei V. K., “Decomposing a permutation into two large cycles; an enumeration”, SIAM J. Algebraic Discr. Meth., 1:4 (1980), 450–461 | DOI | MR | Zbl
[3] Boccara G., “Cycles commi produit de deux permutations de classes donnes”, Discrete Math., 38:3 (1982), 129–142 | DOI | MR | Zbl
[4] Brenner J. L., Evans R. J., “Even permutations as a product of two elements of order five”, J. Combin. Theory A, 45:2 (1987), 196–206 | DOI | MR | Zbl
[5] Brenner J. L., “Covering theorems for FINANSIGS VIII – almost all conjugacy classes in $A_N$ have exponent $\le4$”, J. Austral. Math. Soc., 25 (1987), 210–214 | DOI | MR
[6] Herzog M., Reid K. B., “Representation of permutations as products of cycles of fixed length”, J. Australian Math. Soc. Ser. A, 22:3 (1976), 321–331 | DOI | MR | Zbl
[7] Moran G. Reflection classes whose cubes cover the alternating group, J. Combin. Theory A, 21:1 (1976), 1–19 | DOI | MR | Zbl
[8] Moran G., “Permutations as products of $k$ conjugate involutions”, J. Combin. Theory A, 19:2 (1975), 240–242 | DOI | MR | Zbl
[9] Stanley R. P., “Factorization of permutation into $n$-cycles”, Discrete Math., 37:3 (1981), 255–262 | DOI | MR | Zbl
[10] Arad Z., Herzog M. (eds.), Product of conjugacy classes in groups, Lect. Notes Math., 1112, Springer-Verlag, Berlin, 1985, 244 pp. | DOI | MR | Zbl
[11] Goupil A., “On products of conjugacy classes of the symmetric group”, Discrete Math., 79:1 (1990), 45–57 | DOI | MR
[12] Dvir Y., “Covering properties of permutation groups”, Lect. Notes Math., 1112, 1985, 197–221 | DOI | MR
[13] Tuzhilin M. E., “O porozhdenii znakoperemennoi gruppy poluregulyarnymi involyutsiyami”, Obozr. prikl. i promyshl. matem., 11:4 (2004), 938–939