Description of the set of permutations represented as a product of two permutations with fixed number of mobile points
Matematičeskie voprosy kriptografii, Tome 3 (2012) no. 2, pp. 79-95 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We describe completely the structure of the set of permutations representable by the product of two permutations with $q$ mobile and $N-q$ fixed points, $4\le q\le\frac N2$.
@article{MVK_2012_3_2_a3,
     author = {A. B. Pichkur},
     title = {Description of the set of permutations represented as a~product of two permutations with fixed number of mobile points},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {79--95},
     year = {2012},
     volume = {3},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2012_3_2_a3/}
}
TY  - JOUR
AU  - A. B. Pichkur
TI  - Description of the set of permutations represented as a product of two permutations with fixed number of mobile points
JO  - Matematičeskie voprosy kriptografii
PY  - 2012
SP  - 79
EP  - 95
VL  - 3
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/MVK_2012_3_2_a3/
LA  - ru
ID  - MVK_2012_3_2_a3
ER  - 
%0 Journal Article
%A A. B. Pichkur
%T Description of the set of permutations represented as a product of two permutations with fixed number of mobile points
%J Matematičeskie voprosy kriptografii
%D 2012
%P 79-95
%V 3
%N 2
%U http://geodesic.mathdoc.fr/item/MVK_2012_3_2_a3/
%G ru
%F MVK_2012_3_2_a3
A. B. Pichkur. Description of the set of permutations represented as a product of two permutations with fixed number of mobile points. Matematičeskie voprosy kriptografii, Tome 3 (2012) no. 2, pp. 79-95. http://geodesic.mathdoc.fr/item/MVK_2012_3_2_a3/

[1] Bertram E., “Even permutations as a product of two conjugate cycles”, J. Combin. Theory A, 12:3 (1972), 368–380 | DOI | MR | Zbl

[2] Bertram E., Wei V. K., “Decomposing a permutation into two large cycles; an enumeration”, SIAM J. Algebraic Discr. Meth., 1:4 (1980), 450–461 | DOI | MR | Zbl

[3] Boccara G., “Cycles commi produit de deux permutations de classes donnes”, Discrete Math., 38:3 (1982), 129–142 | DOI | MR | Zbl

[4] Brenner J. L., Evans R. J., “Even permutations as a product of two elements of order five”, J. Combin. Theory A, 45:2 (1987), 196–206 | DOI | MR | Zbl

[5] Brenner J. L., “Covering theorems for FINANSIGS VIII – almost all conjugacy classes in $A_N$ have exponent $\le4$”, J. Austral. Math. Soc., 25 (1987), 210–214 | DOI | MR

[6] Herzog M., Reid K. B., “Representation of permutations as products of cycles of fixed length”, J. Australian Math. Soc. Ser. A, 22:3 (1976), 321–331 | DOI | MR | Zbl

[7] Moran G. Reflection classes whose cubes cover the alternating group, J. Combin. Theory A, 21:1 (1976), 1–19 | DOI | MR | Zbl

[8] Moran G., “Permutations as products of $k$ conjugate involutions”, J. Combin. Theory A, 19:2 (1975), 240–242 | DOI | MR | Zbl

[9] Stanley R. P., “Factorization of permutation into $n$-cycles”, Discrete Math., 37:3 (1981), 255–262 | DOI | MR | Zbl

[10] Arad Z., Herzog M. (eds.), Product of conjugacy classes in groups, Lect. Notes Math., 1112, Springer-Verlag, Berlin, 1985, 244 pp. | DOI | MR | Zbl

[11] Goupil A., “On products of conjugacy classes of the symmetric group”, Discrete Math., 79:1 (1990), 45–57 | DOI | MR

[12] Dvir Y., “Covering properties of permutation groups”, Lect. Notes Math., 1112, 1985, 197–221 | DOI | MR

[13] Tuzhilin M. E., “O porozhdenii znakoperemennoi gruppy poluregulyarnymi involyutsiyami”, Obozr. prikl. i promyshl. matem., 11:4 (2004), 938–939