Poisson approximation for the distribution of the number of “parallelograms” in a random sample from $\mathbb Z_N^q$
Matematičeskie voprosy kriptografii, Tome 3 (2012) no. 2, pp. 63-78 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a random sample with replacement $\xi_1,\dots,\xi_T$ from a group $\mathbb Z_N^q$, $N\geq4$, we consider the distribution of the number $\zeta$ of 4-element subsets satisfying the relation of type $\xi_{i_1}-\xi_{i_2}=\xi_{i_3}-\xi_{i_4}$ and additional condition given in terms of a metric on this group. Estimates of the accuracy of Poisson approximation for the distribution of $\zeta$ are obtained and conditions of the weak convergence of $\zeta$ to the Poisson law are established.
@article{MVK_2012_3_2_a2,
     author = {V. I. Kruglov},
     title = {Poisson approximation for the distribution of the number of {\textquotedblleft}parallelograms{\textquotedblright} in a~random sample from $\mathbb Z_N^q$},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {63--78},
     year = {2012},
     volume = {3},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2012_3_2_a2/}
}
TY  - JOUR
AU  - V. I. Kruglov
TI  - Poisson approximation for the distribution of the number of “parallelograms” in a random sample from $\mathbb Z_N^q$
JO  - Matematičeskie voprosy kriptografii
PY  - 2012
SP  - 63
EP  - 78
VL  - 3
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/MVK_2012_3_2_a2/
LA  - ru
ID  - MVK_2012_3_2_a2
ER  - 
%0 Journal Article
%A V. I. Kruglov
%T Poisson approximation for the distribution of the number of “parallelograms” in a random sample from $\mathbb Z_N^q$
%J Matematičeskie voprosy kriptografii
%D 2012
%P 63-78
%V 3
%N 2
%U http://geodesic.mathdoc.fr/item/MVK_2012_3_2_a2/
%G ru
%F MVK_2012_3_2_a2
V. I. Kruglov. Poisson approximation for the distribution of the number of “parallelograms” in a random sample from $\mathbb Z_N^q$. Matematičeskie voprosy kriptografii, Tome 3 (2012) no. 2, pp. 63-78. http://geodesic.mathdoc.fr/item/MVK_2012_3_2_a2/

[1] Klykova N. V., “Predelnoe raspredelenie chisla sovpadayuschikh promezhutkov”, Obozr. prikl. i promyshl. matem., 7:1 (2000), 109

[2] Klykova N. V., “Predelnoe raspredelenie chisla sovpadayuschikh promezhutkov”, Teoriya veroyatnostei i ee primeneniya, 47:1 (2002), 147–152 | MR | Zbl

[3] Knut D., Iskusstvo programmirovaniya, v. 2, Poluchislennye metody, OOO “I. D. Vilyams”, M., 2007

[4] A statistical test suite for random and pseudorandom number generators for cryptographic applications, NIST Special Publication 800-22 http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html

[5] Barbour A. D., Chen L. H. Y., An introduction to Stein's method, World Scientific, 2005 | MR | Zbl

[6] Wagner D., “The boomerang attack”, FSE-99, Lect. Notes in Comput. Sci., 1636, 1999, 156–170 | DOI | Zbl