Family of maximal period sequences with low cross-correlation over an 8-element ring
Matematičeskie voprosy kriptografii, Tome 2 (2011) no. 3, pp. 47-73 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A family of sequences over a ring with 8 elements having period $2(2^m-1)$ and cross-correlation function asymptotically optimal with respect to the Sidelnikov and Welch bounds is constructed.
@article{MVK_2011_2_3_a2,
     author = {V. L. Kurakin},
     title = {Family of maximal period sequences with low cross-correlation over an 8-element ring},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {47--73},
     year = {2011},
     volume = {2},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2011_2_3_a2/}
}
TY  - JOUR
AU  - V. L. Kurakin
TI  - Family of maximal period sequences with low cross-correlation over an 8-element ring
JO  - Matematičeskie voprosy kriptografii
PY  - 2011
SP  - 47
EP  - 73
VL  - 2
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/MVK_2011_2_3_a2/
LA  - ru
ID  - MVK_2011_2_3_a2
ER  - 
%0 Journal Article
%A V. L. Kurakin
%T Family of maximal period sequences with low cross-correlation over an 8-element ring
%J Matematičeskie voprosy kriptografii
%D 2011
%P 47-73
%V 2
%N 3
%U http://geodesic.mathdoc.fr/item/MVK_2011_2_3_a2/
%G ru
%F MVK_2011_2_3_a2
V. L. Kurakin. Family of maximal period sequences with low cross-correlation over an 8-element ring. Matematičeskie voprosy kriptografii, Tome 2 (2011) no. 3, pp. 47-73. http://geodesic.mathdoc.fr/item/MVK_2011_2_3_a2/

[1] Kuzmin A. S., Kurakin V. L., Nechaev A. A., “Psevdosluchainye i polilineinye posledovatelnosti”, Trudy po diskretnoi matematike, 1, TVP, M., 1997, 139–202 | MR | Zbl

[2] Nechaev A. A., Kuzmin A. S., Kurakin V. L., “Strukturnye, analiticheskie i statisticheskie svoistva lineinykh i polilineinykh rekurrent”, Trudy po diskretnoi matematike, 3, Fizmatlit, M., 2000, 155–194

[3] Kuzmin A. S., Kurakin V. L., Nechaev A. A., “Statisticheskie svoistva lineinykh rekurrent nad koltsami Galua i kvazifrobeniusovymi modulyami kharakteristiki 4”, Trudy po diskretnoi matematike, 4, Fizmatlit, M., 2001, 91–128

[4] Nechaev A. A., Kuzmin A. S., Kurakin V. L., “Vpolne ravnomernye lineinye rekurrenty nad koltsami Galua i QF-modulyami kharakteristiki 4”, Trudy po diskretnoi matematike, 5, Fizmatlit, M., 2002, 103–158

[5] Kurakin V. L., “Semeistvo posledovatelnostei nad koltsom iz 8 elementov s nizkoi korrelyatsiei”, Matem. voprosy kriptografii, 1:4 (2010), 85–109

[6] Nechaev A. A., “Kod Kerdoka v tsiklicheskoi forme”, Diskretn. matem., 1:4 (1989), 123–139 | MR | Zbl

[7] Nechaev A. A., “Konechnye kvazifrobeniusovy moduli, prilozheniya k kodam i lineinym rekurrentam”, Fund. i prikl. mat. (TsNIIT MGU), 1:1 (1995), 229–254 | MR | Zbl

[8] Sidelnikov V. M., “O vzaimnoi korrelyatsii posledovatelnostei”, Dokl. AN SSSR, 12 (1971), 197–201

[9] Boztas S., Hammons R., Kumar P. V., “4-phase sequences with near-optimum correlation properties”, IEEE TIT, 38:3 (1992), 1101–1113 | DOI | Zbl

[10] McDonald B. R., Finite rings with identity, Marcel Dekker, New York, 1974 | MR | Zbl

[11] Nechaev A. A., “Finite rings with applications”, Handbook of Algebra, v. 5, Elsevier, 2008, 213–320 | MR | Zbl

[12] Welch L. R., “Lower bounds on the maximum cross correlation of signals”, IEEE TIT, 20:3 (1974), 397–399 | DOI | MR | Zbl