Parallel decomposition of nonautonomous 2-linear shift registers
Matematičeskie voprosy kriptografii, Tome 2 (2011) no. 3, pp. 5-29 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A variant of decomposition of nonautonomous 2-linear shift register over the Galois field is considered. It is shown that a nonautonomous 2-linear shift register over the finite field may be represented as a parallel system of clock-controlled shift registers. By means of this construction and the meet-in-the-middle attack the estimate of the cryptographic security of the register considered is lowered considerably.
@article{MVK_2011_2_3_a0,
     author = {O. A. Kozlitin},
     title = {Parallel decomposition of nonautonomous 2-linear shift registers},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {5--29},
     year = {2011},
     volume = {2},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2011_2_3_a0/}
}
TY  - JOUR
AU  - O. A. Kozlitin
TI  - Parallel decomposition of nonautonomous 2-linear shift registers
JO  - Matematičeskie voprosy kriptografii
PY  - 2011
SP  - 5
EP  - 29
VL  - 2
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/MVK_2011_2_3_a0/
LA  - ru
ID  - MVK_2011_2_3_a0
ER  - 
%0 Journal Article
%A O. A. Kozlitin
%T Parallel decomposition of nonautonomous 2-linear shift registers
%J Matematičeskie voprosy kriptografii
%D 2011
%P 5-29
%V 2
%N 3
%U http://geodesic.mathdoc.fr/item/MVK_2011_2_3_a0/
%G ru
%F MVK_2011_2_3_a0
O. A. Kozlitin. Parallel decomposition of nonautonomous 2-linear shift registers. Matematičeskie voprosy kriptografii, Tome 2 (2011) no. 3, pp. 5-29. http://geodesic.mathdoc.fr/item/MVK_2011_2_3_a0/

[1] Babash A. V., Shankin G. P., Kriptografiya, Solon-R, M., 2002, 512 pp.

[2] Glukhov M. M., Elizarov V. P., Nechaev A. A., Algebra, Gelios ARV, M., 2003, 749 pp.

[3] Glushkov V. M., Letichevskii A. A., “Avtomatov teoriya”, Entsiklopediya kibernetiki, v. 1, Kiev, 1975, 57–60

[4] Gorbatov E. V., Nechaev A. A., “Konechnye kvazifrobeniusovy bimoduli i polilineinye registry sdviga”, Trudy po diskretnoi matematike, 9, Gelios ARV, M., 2006, 164–189

[5] Kozlitin O. A., “Periodicheskie svoistva prosteishego 2-lineinogo registra sdviga”, Diskretnaya matematika, 19:3 (2007), 51–78 | MR | Zbl

[6] Kozlitin O. A., “Svoistva vykhodnoi posledovatelnosti prosteishego camoupravlyaemogo 2-lineinogo registra sdviga”, Diskretnaya matematika, 19:4 (2007), 70–96 | MR | Zbl

[7] Kuzmin A. S., Kurakin V. L., Nechaev A. A., “Psevdosluchainye i polilineinye posledovatelnosti”, Trudy po diskretnoi matematike, 1, TVP, M., 1997, 139–202 | MR | Zbl

[8] Kurakin V. L., “Lineinaya slozhnost polilineinykh posledovatelnostei”, Diskretnaya matematika, 13:1 (2001), 3–55 | MR | Zbl

[9] Kurakin V. L., “Svobodnye registry sdviga I”, Trudy po diskretnoi matematike, 9, Gelios ARV, M., 2006, 77–109

[10] Lidl R., Niderraiter G., Konechnye polya, Mir, M., 1988, 818 pp. | Zbl

[11] Nechaev A. A., “Mnogomernye registry sdviga i slozhnost multiposledovatelnostei”, Trudy po diskretnoi matematike, 6, Fizmatlit, M., 2002, 150–164

[12] Fomichëv V. M., Diskretnaya matematika i kriptologiya, Dialog-MIFI, M., 2003, 397 pp.

[13] Kurakin V. L., Kuzmin A. S., Mikhalev A. V., Nechaev A. A., “Linear recurring sequences over rings and modules”, J. Math. Sci., 76:6 (1995), 2793–2915 | DOI | MR | Zbl

[14] Beth T., Piper E., “The stop-and-go generator”, Eurocrypt' 84, Lect. Notes Comput. Sci., 209, 1985, 88–92 | MR | Zbl

[15] Nomura T., Fukuda A., “Linear recurring planes and two-dimensional cyclic codes”, Electronic Commun. Japan, 54:3 (1971), 23–30 | MR

[16] Nyffeler P., Binary Automation und ihre linearen Rekursionen, Ph. D. thesis, Univ. of Berne, 1975

[17] Vogel R., “On the linear complexity of cascaded sequences”, Eurocrypt' 84, Lect. Notes Comput. Sci., 209, 1985, 99–109 | Zbl