On the structure of strictly convex $k$-functions
Matematičeskie voprosy kriptografii, Tome 2 (2011) no. 1, pp. 75-95 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article deals with strictly convex $k$-functions $f(x_1,\dots,x_n)$, $x_1,\dots,x_n\in\{0,1,\dots,k-1\}$. For such functions each equation $f(x_1,\dots,x_n)=\alpha$, $\alpha\in\{0,1,\dots,k-\nobreakspace1\}$, may be represented by an equivalent system of linear inequalities. The minimal number $r_\alpha$ of inequalities in the system is called the threshold index for the considering equation. For strictly convex $k$-function $f(x_1,\dots,x_n)$ the total threshold complexity $h=\sum_{\alpha=0}^{k-1}r_\alpha$ is considered and the range of $h$ is investigated.
@article{MVK_2011_2_1_a2,
     author = {V. G. Nikonov},
     title = {On the structure of strictly convex $k$-functions},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {75--95},
     year = {2011},
     volume = {2},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2011_2_1_a2/}
}
TY  - JOUR
AU  - V. G. Nikonov
TI  - On the structure of strictly convex $k$-functions
JO  - Matematičeskie voprosy kriptografii
PY  - 2011
SP  - 75
EP  - 95
VL  - 2
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/MVK_2011_2_1_a2/
LA  - ru
ID  - MVK_2011_2_1_a2
ER  - 
%0 Journal Article
%A V. G. Nikonov
%T On the structure of strictly convex $k$-functions
%J Matematičeskie voprosy kriptografii
%D 2011
%P 75-95
%V 2
%N 1
%U http://geodesic.mathdoc.fr/item/MVK_2011_2_1_a2/
%G ru
%F MVK_2011_2_1_a2
V. G. Nikonov. On the structure of strictly convex $k$-functions. Matematičeskie voprosy kriptografii, Tome 2 (2011) no. 1, pp. 75-95. http://geodesic.mathdoc.fr/item/MVK_2011_2_1_a2/

[1] Nikonov V. G., Nikonov N. V., “Osobennosti porogovykh predstavlenii $k$-znachnykh funktsii”, Trudy po diskretnoi matematike, 11, no. 1, FIZMATLIT, M., 2008, 60–85

[2] Balakin G. V., Nikonov V. G., “Metody svedeniya bulevykh uravnenii k sistemam porogovykh sootnoshenii”, Obozr. prikl. promyshl. matem., 1:3 (1994), 389–401 | Zbl

[3] Nikonov V. G., Nikonov N. V., “O primenenii metodov porogovoi logiki dlya analiza i resheniya nelineinykh bulevykh i $k$-znachnykh uravnenii”, Materialy XXXII Mezhdunar. konf. “Informatsionnye tekhnologii v nauke, sotsiologii, ekonomike i biznese, IT+S and E' 05”, Zaporozh. nats. un-t, Zaporozhe, 2005, 46–47

[4] Nikonov N. V., Rybnikov K. K., “Prikladnye zadachi, svodyaschiesya k analizu i resheniyu sistem lineinykh neravenstv. Metod razdelyayuschikh ploskostei”, Vestnik MGUL “Lesnoi vestnik”, 2002, no. 2(22), 191–195

[5] Nikonov V. G., “Porogovye predstavleniya bulevykh funktsii”, Obozr. prikl. promyshl. matem., 1:3 (1994), 402–457 | MR | Zbl

[6] Nikonov V. G., “Klassifikatsiya minimalnykh bazisnykh predstavlenii vsekh bulevykh funktsii ot chetyrekh peremennykh”, Obozr. prikl. pro-myshl. matem., 1:3 (1994), 458–545 | MR | Zbl

[7] Nikonov V. G., “Pokrytiya bulevykh grafov”, Diskretn. matem., 6:4 (1994), 21–34 | MR | Zbl

[8] Dertouzos M., Porogovaya logika, Mir, M., 1967

[9] Butakov E. A., Metody sinteza releinykh ustroistv na porogovykh elementakh, Energiya, M., 1970

[10] Chernikov S. N., Lineinye neravenstva, Nauka, M., 1968 | MR | Zbl

[11] Yablonskii S. V., Vvedenie v diskretnuyu matematiku, Nauka, M., 1986 | MR

[12] Yablonskii S. V., Gavrilov G. P., Kudryavtsev V. B., Funktsii algebry logiki i klassy Posta, Nauka, M., 1966 | MR