@article{MVK_2010_1_3_a1,
author = {V. P. Elizarov},
title = {On classes of solvable rings},
journal = {Matemati\v{c}eskie voprosy kriptografii},
pages = {19--26},
year = {2010},
volume = {1},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MVK_2010_1_3_a1/}
}
V. P. Elizarov. On classes of solvable rings. Matematičeskie voprosy kriptografii, Tome 1 (2010) no. 3, pp. 19-26. http://geodesic.mathdoc.fr/item/MVK_2010_1_3_a1/
[1] Burbaki N., Algebra: algebraicheskie struktury, lineinaya i polilineinaya algebra, FIZMATGIZ, M., 1962
[2] Van der Varden B. L., Algebra, Nauka, M., 1976 | MR
[3] Dzhekobson N., Teoriya kolets, GIIL, M., 1947
[4] Elizarov V. P., “Usloviya sovmestnosti sistem lineinykh uravnenii nad koltsami”, Fundam. i prikl. matem., 6:3 (2000), 777–788 | MR | Zbl
[5] Elizarov V. P., “Sistemy lineinykh uravnenii nad modulyami”, Fundam. i prikl. matem., 8:4 (2002), 979–991 | MR | Zbl
[6] Elizarov V. P., “Usloviya, neobkhodimye dlya razreshimosti sistemy lineinykh uravnenii nad koltsom”, Diskretn. matem., 16:2 (2004), 44–53 | MR | Zbl
[7] Elizarov V. P., “Razreshimye i lokalno zamknutye moduli i koltsa”, Diskret. matem., 18:1 (2006), 30–39 | MR | Zbl
[8] Rodosskii K. A., Algoritm Evklida, Nauka, M., 1988 | MR | Zbl
[9] Feis K., Algebra: koltsa, moduli i kategorii, v. 1, Mir, M., 1977
[10] Asano K., “Über Verallgemeinerte Abelsche Gruppen mit hypercomplexem Operatorenring und ihre Anwendungen”, Jap. J. Math., 15:4 (1939), 231–253 | MR | Zbl
[11] Van der Waerden B. L., Moderne Algebra, Teil II, Springer, Berlin, 1931