Free shift registers. IV
Matematičeskie voprosy kriptografii, Tome 1 (2010) no. 2, pp. 57-92 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Semigroups and groups of vectorial periods of a shift register over the free semigroup are considered. We suggest a method of derivation of a regular shift register period based on the computation of the index of vectorial periods group. Maximal period free shift registers are defined and conditions of their existence are found. A notion of minimal shift register monoid is introduced and investigated.
@article{MVK_2010_1_2_a3,
     author = {V. L. Kurakin},
     title = {Free shift {registers.~IV}},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {57--92},
     year = {2010},
     volume = {1},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2010_1_2_a3/}
}
TY  - JOUR
AU  - V. L. Kurakin
TI  - Free shift registers. IV
JO  - Matematičeskie voprosy kriptografii
PY  - 2010
SP  - 57
EP  - 92
VL  - 1
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/MVK_2010_1_2_a3/
LA  - ru
ID  - MVK_2010_1_2_a3
ER  - 
%0 Journal Article
%A V. L. Kurakin
%T Free shift registers. IV
%J Matematičeskie voprosy kriptografii
%D 2010
%P 57-92
%V 1
%N 2
%U http://geodesic.mathdoc.fr/item/MVK_2010_1_2_a3/
%G ru
%F MVK_2010_1_2_a3
V. L. Kurakin. Free shift registers. IV. Matematičeskie voprosy kriptografii, Tome 1 (2010) no. 2, pp. 57-92. http://geodesic.mathdoc.fr/item/MVK_2010_1_2_a3/

[1] Kurakin V. L., “Svobodnye registry sdviga. I”, Trudy po diskretnoi matematike, 9, Gelios ARV, M., 2006, 77–109

[2] Kurakin V. L., “Svobodnye registry sdviga. II”, Trudy po diskretnoi matematike, 10, FIZMATLIT, M., 2007, 123–174

[3] Kurakin V. L., “Svobodnye registry sdviga. III”, Trudy po diskretnoi matematike, 11, FIZMATLIT, M., 2008, 63–85

[4] Kurakin V. L., “Periodicheskie funktsii na svobodnoi polugruppe”, Matem. sb., 197:10 (2006), 109–128 | MR | Zbl

[5] Kuzmin A. S., Kurakin V. L., Nechaev A. A., “Psevdosluchainye i polilineinye posledovatelnosti”, Trudy po diskretnoi matematike, 1, TVP, M., 1997, 139–202 | MR

[6] Nechaev A. A., “Mnogomernye registry sdviga i slozhnost multiposledovatelnostei”, Trudy po diskretnoi matematike, 6, FIZMATLIT, M., 2002, 150–164

[7] Pogorelov B. A., “Primitivnye gruppy podstanovok, soderzhaschie $2^m$-tsikl”, Algebra i logika, 19:2 (1980), 236–241 | MR

[8] Kholl M., Teoriya grupp, IL, M., 1962

[9] Kurakin V. L., Kuzmin A. S., Mikhalev A. V., Nechaev A. A., “Linear recurring sequences over rings and modules”, J. Math. Sci., 76:6 (1995), 2793–2915 | DOI | MR | Zbl