Conditions of limit uniformity of shift register state distribution
Matematičeskie voprosy kriptografii, Tome 1 (2010) no. 2, pp. 19-29 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A shift register with Markovian input sequence is considered. Sufficient conditions for the convergence of register state distribution to the uniform law are given.
@article{MVK_2010_1_2_a1,
     author = {I. A. Kruglov},
     title = {Conditions of limit uniformity of shift register state distribution},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {19--29},
     year = {2010},
     volume = {1},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2010_1_2_a1/}
}
TY  - JOUR
AU  - I. A. Kruglov
TI  - Conditions of limit uniformity of shift register state distribution
JO  - Matematičeskie voprosy kriptografii
PY  - 2010
SP  - 19
EP  - 29
VL  - 1
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/MVK_2010_1_2_a1/
LA  - ru
ID  - MVK_2010_1_2_a1
ER  - 
%0 Journal Article
%A I. A. Kruglov
%T Conditions of limit uniformity of shift register state distribution
%J Matematičeskie voprosy kriptografii
%D 2010
%P 19-29
%V 1
%N 2
%U http://geodesic.mathdoc.fr/item/MVK_2010_1_2_a1/
%G ru
%F MVK_2010_1_2_a1
I. A. Kruglov. Conditions of limit uniformity of shift register state distribution. Matematičeskie voprosy kriptografii, Tome 1 (2010) no. 2, pp. 19-29. http://geodesic.mathdoc.fr/item/MVK_2010_1_2_a1/

[1] Bakhturin Yu. A., Osnovnye struktury sovremennoi algebry, Nauka, M., 1990, 320 pp. | MR | Zbl

[2] Gorchinskii Yu. N., Kruglov I. A., Kapitonov V. M., “Voprosy teorii raspredelenii na konechnykh gruppakh”, Trudy po diskretnoi matematike, 1, TVP, M., 1997, 85–112 | MR

[3] Egorov B. A., Maksimov Yu. I., “Ob odnoi posledovatelnosti sluchainykh velichin, prinimayuschikh znacheniya iz kompaktnoi kommutativnoi gruppy”, Teoriya veroyatn. primen., 13:4 (1968), 621–630 | MR | Zbl

[4] Kapitonov V. M., “O skorosti skhodimosti posledovatelnosti raspredelenii, opredelyaemykh skhemoi avtoregressii na kompaktnoi gruppe”, Teoriya veroyatn. primen., 18:3 (1973), 608–615 | MR | Zbl

[5] Kruglov I. A., “Printsip skhodimosti Klossa dlya proizvedenii sluchainykh velichin so znacheniyami v kompaktnoi gruppe, raspredeleniya kotorykh opredelyayutsya tsepyu Markova”, Diskret. matem., 20:1 (2008), 38–51 | MR | Zbl

[6] Maksimov Yu. I., “O tsepyakh Markova, svyazannykh s dvoichnymi registrami sdviga so sluchainymi elementami”, Trudy po diskretnoi matematike, 1, TVP, M., 1997, 203–220 | MR | Zbl

[7] Sarymsakov T. A., Osnovy teorii protsessov Markova, GITTL, M., 1954, 208 pp.