Cycle structure of the elements of centralizers of permutations from the symmetric group
Matematičeskie voprosy kriptografii, Tome 1 (2010) no. 1, pp. 85-100 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\xi$ be the number of cycles of a random element of centralizer of a permutation from the symmetric group $S_n$ with given cycle structure. For some classes of permutations generating functions and limit distributions of $\xi$ as $n\to\infty$ are described.
@article{MVK_2010_1_1_a4,
     author = {V. N. Sachkov},
     title = {Cycle structure of the elements of centralizers of permutations from the symmetric group},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {85--100},
     year = {2010},
     volume = {1},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2010_1_1_a4/}
}
TY  - JOUR
AU  - V. N. Sachkov
TI  - Cycle structure of the elements of centralizers of permutations from the symmetric group
JO  - Matematičeskie voprosy kriptografii
PY  - 2010
SP  - 85
EP  - 100
VL  - 1
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/MVK_2010_1_1_a4/
LA  - ru
ID  - MVK_2010_1_1_a4
ER  - 
%0 Journal Article
%A V. N. Sachkov
%T Cycle structure of the elements of centralizers of permutations from the symmetric group
%J Matematičeskie voprosy kriptografii
%D 2010
%P 85-100
%V 1
%N 1
%U http://geodesic.mathdoc.fr/item/MVK_2010_1_1_a4/
%G ru
%F MVK_2010_1_1_a4
V. N. Sachkov. Cycle structure of the elements of centralizers of permutations from the symmetric group. Matematičeskie voprosy kriptografii, Tome 1 (2010) no. 1, pp. 85-100. http://geodesic.mathdoc.fr/item/MVK_2010_1_1_a4/

[1] Sachkov V. N., “Translyatory i translyatsii diskretnykh funktsii”, Trudy po diskretnoi matematike, 9, Gelios, M., 2006, 253–268

[2] Sachkov V. N., Kombinatornye metody diskretnoi matematiki, Nauka, M., 1977