Properties of graphs of orbitals for overgroups of the Jevons group
Matematičeskie voprosy kriptografii, Tome 1 (2010) no. 1, pp. 55-83 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we consider properties of graphs of orbitals for sub-schemes of the Hamming scheme. We describe distance-transitive, distance-regular, antipodal and bipartite graphs of orbitals. Automorphism groups of the graphs of orbitals, their metrics, quotient metric and corresponding properties are investigated also.
@article{MVK_2010_1_1_a3,
     author = {B. A. Pogorelov and M. A. Pudovkina},
     title = {Properties of graphs of orbitals for overgroups of the {Jevons} group},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {55--83},
     year = {2010},
     volume = {1},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2010_1_1_a3/}
}
TY  - JOUR
AU  - B. A. Pogorelov
AU  - M. A. Pudovkina
TI  - Properties of graphs of orbitals for overgroups of the Jevons group
JO  - Matematičeskie voprosy kriptografii
PY  - 2010
SP  - 55
EP  - 83
VL  - 1
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/MVK_2010_1_1_a3/
LA  - ru
ID  - MVK_2010_1_1_a3
ER  - 
%0 Journal Article
%A B. A. Pogorelov
%A M. A. Pudovkina
%T Properties of graphs of orbitals for overgroups of the Jevons group
%J Matematičeskie voprosy kriptografii
%D 2010
%P 55-83
%V 1
%N 1
%U http://geodesic.mathdoc.fr/item/MVK_2010_1_1_a3/
%G ru
%F MVK_2010_1_1_a3
B. A. Pogorelov; M. A. Pudovkina. Properties of graphs of orbitals for overgroups of the Jevons group. Matematičeskie voprosy kriptografii, Tome 1 (2010) no. 1, pp. 55-83. http://geodesic.mathdoc.fr/item/MVK_2010_1_1_a3/

[1] Bannai E., Ito T., Algebraicheskaya kombinatorika, Mir, M., 1987, 373 pp. | MR

[2] Muzychuk M. E., “Podskhemy skhemy Khemminga. Issledovaniya po algebraicheskoi teorii kombinatornykh ob'ektov”, VNII sistemnykh issledovanii. Trudy seminara, M., 1985, 49–76 | MR

[3] Pogorelov B. A., “Podmetriki metriki Khemminga i teorema A. A. Markova”, Trudy po diskretnoi matematike, 9, FIZMATLIT, M., 2006

[4] Pogorelov B. A., Pudovkina M. A., “Podmetriki metriki Khemminga i preobrazovaniya, rasprostranyayuschie iskazheniya v zadannoe chislo raz”, Trudy po diskretnoi matematike, 10, FIZMATLIT, M., 2007 | Zbl

[5] Pogorelov B. A., Pudovkina M. A., “Podmetriki Khemminga i ikh gruppy izometrii”, Trudy po diskretnoi matematike, 11, FIZMATLIT, M., 2008

[6] Kharari F., Teoriya grafov, Mir, M., 1973, 300 pp. | MR

[7] Brouwer A. E., Cohen A. M., Neumaier A., Distance-regular graphs, Springer-Verlag, Berlin, 1989 | MR | Zbl

[8] van Bon J. T. M., Brouwer A. E., “The distance-regular antipodal covers of classical distance-regular graphs”, Proc. Eger, Colloq. Math. Soc. János Bolyai, 52, 1987, 141–166 | MR

[9] Brouwer A. E., Koolen J. H., “The distance-regular graphs of valency four”, J. Algebr. Combin., 10 (1999), 5–24 | DOI | MR | Zbl

[10] Cameron P. J., Permutation groups, London Math. Soc. Student Texts, 45, Cambridge Univ. Press, 1999 | MR | Zbl

[11] Godsil C., Association schemes, Lect. Notes, Univ. Waterloo, 2004

[12] Ivanov A. A., “Distance-transitive graphs and their classification”, Investigations in algebraic theory of combinatorial objects, Kluwer, Dordrecht, 1994, 283–378 | MR | Zbl

[13] Ivanov A. A. Liebler R., Penttila T., Praeger C., “Antipodal distance-transitive covers of complete bipartite graphs”, European J. Combin., 18 (1997), 11–33 | DOI | MR | Zbl

[14] Praeger C. E., “Finite transitive permutation groups and bipartite vertextransitive graphs”, Illinois J. Math., 47 (2003), 461–475 | MR | Zbl

[15] Smith D. H., “Primitive and imprimitive graphs”, Quart. J. Math. Oxford, 22 (1971), 551–557 | DOI | MR | Zbl

[16] Soicher L. H., The GRAPE package for GAP, http://www.maths.qmul.ac.uk/~leonard/grape

[17] Soicher L. H., “Three new distance-regular graphs”, Europ. J. Comb., 14 (1993), 501–505 | DOI | MR | Zbl