On, algorithmic constructions of isogenies of elliptic curves over finite fields and their applications
Matematičeskie voprosy kriptografii, Tome 1 (2010) no. 1, pp. 7-22 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An algorithm of S.D.Galbraith for constructing isogenies of elliptic curves over finite fields are described together with some its modifications. Applications of isogenies of elliptic curves over finite fields are discussed.
@article{MVK_2010_1_1_a1,
     author = {O. N. Vasilenko},
     title = {On, algorithmic constructions of isogenies of elliptic curves over finite fields and their applications},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {7--22},
     year = {2010},
     volume = {1},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2010_1_1_a1/}
}
TY  - JOUR
AU  - O. N. Vasilenko
TI  - On, algorithmic constructions of isogenies of elliptic curves over finite fields and their applications
JO  - Matematičeskie voprosy kriptografii
PY  - 2010
SP  - 7
EP  - 22
VL  - 1
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/MVK_2010_1_1_a1/
LA  - ru
ID  - MVK_2010_1_1_a1
ER  - 
%0 Journal Article
%A O. N. Vasilenko
%T On, algorithmic constructions of isogenies of elliptic curves over finite fields and their applications
%J Matematičeskie voprosy kriptografii
%D 2010
%P 7-22
%V 1
%N 1
%U http://geodesic.mathdoc.fr/item/MVK_2010_1_1_a1/
%G ru
%F MVK_2010_1_1_a1
O. N. Vasilenko. On, algorithmic constructions of isogenies of elliptic curves over finite fields and their applications. Matematičeskie voprosy kriptografii, Tome 1 (2010) no. 1, pp. 7-22. http://geodesic.mathdoc.fr/item/MVK_2010_1_1_a1/

[1] Vasilenko O. N., “Novye metody vychisleniya kratnoi tochki na ellipticheskoi krivoi nad konechnym polem”, Trudy po diskretnoi matematike, 11, FIZMATLIT, M., 2008, 5–30

[2] Vasilenko O. N., Teoretiko-chislovye algoritmy v kriptografii, MTsNMO, M., 2006, 334 pp.

[3] Blake I., Seroussi G., Smart N., Elliptic curves in cryptography, Cambridge Univ. Press, Cambridge, 1999, 204 pp. | MR | Zbl

[4] Blake I., Seroussi G., Smart N., Advances in elliptic curve cryptography, Cambridge Univ. Press, Cambridge, 2005, 296 pp. | MR | Zbl

[5] Bostan A., Morain F., Salvy B., Fast algorithms for computing isogenies between elliptic curves, INRIA-00091441, version 1–6 Sep. 2006

[6] Cohen H., A course in computational algebraic number theory, Springer-Verlag, New York, Berlin, Heidelberg, 1993, 534 pp. | MR

[7] Dewaghe R., Barua R., Sarkar P., “Isogenie entre courbes elliptiques”, Utilitas Math., 55 (1999), 123–127 | MR | Zbl

[8] Dutta R., Barua R., Sarkar P., Pairing-based cryptographic protocols: a survey, Cryptology ePrint Archive, Report 2004/06

[9] Elkies N., Explicit isogenies, Preprint, 1991

[10] Elkies N., “Elliptic and modular curves over finite fields and related computational issues”, Computational perspectives on number theory, Proc. conf. honor of A. O. L. Atkin, AMS, 1997, 21–76 | MR

[11] Enge A., Gaudry P., “A general framework for subexponential discrete logarithm algorithms”, Acta Arithmetica, 102:1 (2002), 83–103 | DOI | MR | Zbl

[12] Frey G., Talk at Waterloo workshop on the ECDLP, , 1998 http://cacr.math.uwaterloo.ca/ conferences/1998/ecc98/slides.html

[13] Galbraith S. D., “Constructing isogenies between elliptic curves over finite fields”, London Math. Soc. J. Comput. Math., 2 (1999), 118–138 | MR | Zbl

[14] Galbraith S. D., Hess F., Smart N. P., “Extending the GHS Weil descent attack”, Lect. Notes Comp. Sci., 2332, 2002, 29–44 | MR | Zbl

[15] Galbraith S. D., Smart N. P., “A cryptographic application of Weil descent”, Lect. Notes Comp. Sci., 1746, 1999, 191–200 | MR | Zbl

[16] Gaudry P., Hess F., Smart N. P., “Constructive and destructive facets of Weil descent on elliptic curves”, J. Cryptology, 15 (2002), 19–46 | DOI | MR

[17] Hankerson D., Menezes A., Vanstone S., Guide to elliptic curve cryptography, Springer-Verlag, New York, Berlin, Heidelberg, 2004 | MR | Zbl

[18] Jao D., Miller S. D., Venkatesan R., Ramanujan graphs and the random reducibility of discrete log on isogenous elliptic curves, Cryptology ePrint Archive, Report 2004/312

[19] Kohel D., Endomorphism rings of elliptic curves over finite fields, Univ. California, Berkeley, 1996 | MR

[20] Müller V., Ein Algorithmus zur Bestimmung der Punktzahl elliptischer Kurven über endlichen Körpern der Characteristik grösser drei, Univ. Saarlandes, 1995

[21] Rostovtsev A., Stolbunov A., Public-key cryptosystem based on isogenies, Cryptology ePrint Archive, Report 2006/145

[22] Schoof R., “Counting points on elliptic curves over finite fields”, J. Theor. Nombr. Bordeaux, 7 (1995), 219–254 | MR | Zbl

[23] Silverman J., The arithmetic of elliptic curves, Springer-Verlag, New York, 1986 | MR

[24] Stewart I., Tall D., Algebraic number theory, Chapman and Hall, New York, 1986 | MR

[25] Tate J., “Endomorphisms of abelian varieties over finite fields”, Invent. Math., 2 (1966), 134–144 | DOI | MR | Zbl

[26] Teske E., “An elliptic curve trapdoor system”, J. Cryptolog., 19:1 (2006), 115–133 | DOI | MR | Zbl

[27] Vasilenko O. N., Number-theoretic algorithms in cryptography, Amer. Math. Soc. Transl. Math. Monogr., 232, 2007 | MR | Zbl

[28] Vélu J., “Isogénies entre courbes elliptiques”, C. R. Acad. Sci. Paris, Sér. I, 273 (1971), 238–241 | MR | Zbl