@article{MVK_2010_1_1_a1,
author = {O. N. Vasilenko},
title = {On, algorithmic constructions of isogenies of elliptic curves over finite fields and their applications},
journal = {Matemati\v{c}eskie voprosy kriptografii},
pages = {7--22},
year = {2010},
volume = {1},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MVK_2010_1_1_a1/}
}
TY - JOUR AU - O. N. Vasilenko TI - On, algorithmic constructions of isogenies of elliptic curves over finite fields and their applications JO - Matematičeskie voprosy kriptografii PY - 2010 SP - 7 EP - 22 VL - 1 IS - 1 UR - http://geodesic.mathdoc.fr/item/MVK_2010_1_1_a1/ LA - ru ID - MVK_2010_1_1_a1 ER -
O. N. Vasilenko. On, algorithmic constructions of isogenies of elliptic curves over finite fields and their applications. Matematičeskie voprosy kriptografii, Tome 1 (2010) no. 1, pp. 7-22. http://geodesic.mathdoc.fr/item/MVK_2010_1_1_a1/
[1] Vasilenko O. N., “Novye metody vychisleniya kratnoi tochki na ellipticheskoi krivoi nad konechnym polem”, Trudy po diskretnoi matematike, 11, FIZMATLIT, M., 2008, 5–30
[2] Vasilenko O. N., Teoretiko-chislovye algoritmy v kriptografii, MTsNMO, M., 2006, 334 pp.
[3] Blake I., Seroussi G., Smart N., Elliptic curves in cryptography, Cambridge Univ. Press, Cambridge, 1999, 204 pp. | MR | Zbl
[4] Blake I., Seroussi G., Smart N., Advances in elliptic curve cryptography, Cambridge Univ. Press, Cambridge, 2005, 296 pp. | MR | Zbl
[5] Bostan A., Morain F., Salvy B., Fast algorithms for computing isogenies between elliptic curves, INRIA-00091441, version 1–6 Sep. 2006
[6] Cohen H., A course in computational algebraic number theory, Springer-Verlag, New York, Berlin, Heidelberg, 1993, 534 pp. | MR
[7] Dewaghe R., Barua R., Sarkar P., “Isogenie entre courbes elliptiques”, Utilitas Math., 55 (1999), 123–127 | MR | Zbl
[8] Dutta R., Barua R., Sarkar P., Pairing-based cryptographic protocols: a survey, Cryptology ePrint Archive, Report 2004/06
[9] Elkies N., Explicit isogenies, Preprint, 1991
[10] Elkies N., “Elliptic and modular curves over finite fields and related computational issues”, Computational perspectives on number theory, Proc. conf. honor of A. O. L. Atkin, AMS, 1997, 21–76 | MR
[11] Enge A., Gaudry P., “A general framework for subexponential discrete logarithm algorithms”, Acta Arithmetica, 102:1 (2002), 83–103 | DOI | MR | Zbl
[12] Frey G., Talk at Waterloo workshop on the ECDLP, , 1998 http://cacr.math.uwaterloo.ca/ conferences/1998/ecc98/slides.html
[13] Galbraith S. D., “Constructing isogenies between elliptic curves over finite fields”, London Math. Soc. J. Comput. Math., 2 (1999), 118–138 | MR | Zbl
[14] Galbraith S. D., Hess F., Smart N. P., “Extending the GHS Weil descent attack”, Lect. Notes Comp. Sci., 2332, 2002, 29–44 | MR | Zbl
[15] Galbraith S. D., Smart N. P., “A cryptographic application of Weil descent”, Lect. Notes Comp. Sci., 1746, 1999, 191–200 | MR | Zbl
[16] Gaudry P., Hess F., Smart N. P., “Constructive and destructive facets of Weil descent on elliptic curves”, J. Cryptology, 15 (2002), 19–46 | DOI | MR
[17] Hankerson D., Menezes A., Vanstone S., Guide to elliptic curve cryptography, Springer-Verlag, New York, Berlin, Heidelberg, 2004 | MR | Zbl
[18] Jao D., Miller S. D., Venkatesan R., Ramanujan graphs and the random reducibility of discrete log on isogenous elliptic curves, Cryptology ePrint Archive, Report 2004/312
[19] Kohel D., Endomorphism rings of elliptic curves over finite fields, Univ. California, Berkeley, 1996 | MR
[20] Müller V., Ein Algorithmus zur Bestimmung der Punktzahl elliptischer Kurven über endlichen Körpern der Characteristik grösser drei, Univ. Saarlandes, 1995
[21] Rostovtsev A., Stolbunov A., Public-key cryptosystem based on isogenies, Cryptology ePrint Archive, Report 2006/145
[22] Schoof R., “Counting points on elliptic curves over finite fields”, J. Theor. Nombr. Bordeaux, 7 (1995), 219–254 | MR | Zbl
[23] Silverman J., The arithmetic of elliptic curves, Springer-Verlag, New York, 1986 | MR
[24] Stewart I., Tall D., Algebraic number theory, Chapman and Hall, New York, 1986 | MR
[25] Tate J., “Endomorphisms of abelian varieties over finite fields”, Invent. Math., 2 (1966), 134–144 | DOI | MR | Zbl
[26] Teske E., “An elliptic curve trapdoor system”, J. Cryptolog., 19:1 (2006), 115–133 | DOI | MR | Zbl
[27] Vasilenko O. N., Number-theoretic algorithms in cryptography, Amer. Math. Soc. Transl. Math. Monogr., 232, 2007 | MR | Zbl
[28] Vélu J., “Isogénies entre courbes elliptiques”, C. R. Acad. Sci. Paris, Sér. I, 273 (1971), 238–241 | MR | Zbl