On exact values of widths of classes of functions analytic in a disk
Matematičeskie trudy, Tome 27 (2024) no. 4, pp. 115-140 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In Hardy spaces $H_{q,\rho} (1\le q\le\infty,\ 0\rho\le R)$ and weighted Bergman spaces $\mathscr{B}_{q,\gamma}$ and $\mathscr{L}_{q,\gamma}$ $(1\le q\infty, \gamma\ge0)$, the best linear approximation methods for classes $W_{a}^{(r)}H_{q,R}(\Phi)$ of functions are obtained. These are functions $f\in H_{q,R}$ whose $r$-th derivative $f_{a}^{(r)}$ with respect to the argument $t$ of the complex variable $z=\rho\exp(it)$ also belongs to $H_{q,R}$ and satisfies the condition $$\frac{1}{h}\int_{0}^{h}\omega(f_{a}^{(r)},t)_{H_{q,R}} dt\le\Phi(h),$$ where $h\in\mathbb{R}_+$, $\omega(\varphi,t)_{H_{q,R}}$ is the modulus of continuity of the function $\varphi\in H_{q,R}$. The exact values of certain $n$-widths of the class $W_{a}^{(r)}H_{q,R}(\Phi)$ in the mentioned spaces are calculated.
@article{MT_2024_27_4_a6,
     author = {M. Sh. Shabozov and A. A. Shabozova},
     title = {On exact values of widths of classes of functions analytic in a disk},
     journal = {Matemati\v{c}eskie trudy},
     pages = {115--140},
     year = {2024},
     volume = {27},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2024_27_4_a6/}
}
TY  - JOUR
AU  - M. Sh. Shabozov
AU  - A. A. Shabozova
TI  - On exact values of widths of classes of functions analytic in a disk
JO  - Matematičeskie trudy
PY  - 2024
SP  - 115
EP  - 140
VL  - 27
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/MT_2024_27_4_a6/
LA  - ru
ID  - MT_2024_27_4_a6
ER  - 
%0 Journal Article
%A M. Sh. Shabozov
%A A. A. Shabozova
%T On exact values of widths of classes of functions analytic in a disk
%J Matematičeskie trudy
%D 2024
%P 115-140
%V 27
%N 4
%U http://geodesic.mathdoc.fr/item/MT_2024_27_4_a6/
%G ru
%F MT_2024_27_4_a6
M. Sh. Shabozov; A. A. Shabozova. On exact values of widths of classes of functions analytic in a disk. Matematičeskie trudy, Tome 27 (2024) no. 4, pp. 115-140. http://geodesic.mathdoc.fr/item/MT_2024_27_4_a6/

[1] Tikhomirov V. M., “Diameters of sets in function spaces and the theory of best approximations”, Russian Math. Surveys, 15:3 (1960), 81–120

[2] Taikov L. V., “The approximation in the mean of certain classes of periodic functions”, Math. Notes, 1 (1967), 155–162

[3] Taikov L. V., “Some exact inequalities in the theory of approximation of functions”, Analysis of Mathematica, 2:1 (1976), 78–85 | DOI

[4] Taikov L. V., “Diameters of certain classes of analytic functions”, Math. Notes, 22:2 (1977), 650–656 | DOI | MR

[5] Ainulloev N., Taikov L. V., “Best approximation in the sense of Kolmogorov of classes of functions analytic in the unit disc”, Math. Notes, 40:3 (1986), 341–351

[6] Dveirin M. Z., Chebanenko I. V., “On Polynomial Approximation in Banach Spaces of Analytic Functions”, Theory of Mappings and Function Approximation, Naukova dumka, Kiev, 1983, 63–73

[7] Fisher S.D., Stessin M.I., “The $n$-width of the unit ball of $H^{q}$”, J. Approx. Theory, 67:3 (1991), 347–356 | DOI | MR

[8] Vakarchuk S. B., “Best linear methods of approximation and widths of classes of analytic functions in a disk”, Math. Notes, 57:1 (1995), 21–27 | DOI | MR

[9] Vakarchuk S. B., “Exact Values of Widths of Classes of Analytic Functions on the Disk and Best Linear Approximation Methods”, Math. Notes, 72:5 (2002), 615–619 | DOI | DOI | MR

[10] Vakarchuk S. B., Zabutnaya V. I., “Best Linear Approximation Methods for Functions of Taikov Classes in the Hardy spaces $H_{q,\rho}$, $q\ge1$, $0\rho\le1$”, Math. Notes, 85:3 (2009), 322–327 | DOI | DOI | MR

[11] Vakarchuk S. B., Shabozov M. Sh., “The widths of classes of analytic functions in a disc”, Sb. Math., 201:8 (2010), 1091–1110 | DOI | DOI | MR

[12] Shabozov M. Sh., Yusupov G. A., Zargarov J. J., “On the best simultaneous polynomial approximation of functions and their derivatives in Hardy spaces”, Trudy Inst. Mat. i Mekh. UrO RAN, 27, no. 4, 2021, 239–254

[13] Shabozov M. Sh., “On the best simultaneous approximation of functions in the Hardy space”, Trudy Inst. Mat. i Mekh. UrO RAN, 29, no. 4, 2023, 283–291

[14] Pinkus A., $n$-Widths in Approximation Theory, Springer-Verlag, Berlin–Heidelberg–New York–Tokyo, 1985 | MR

[15] Langarshoev M. R., “On the best polynomial approximation of functions in the weight Bergman space”, Vladikavkaz. Mat. Zh., 21:1 (2019), 27–36

[16] Korneichuk N.P., Exact Constants in the Theory of Approximation, Nauka, M., 1987

[17] Tikhomirov V.M., Some Questions in the Theory of Approximation, Izdatelstvo MGU, M., 1976

[18] Shikhaliev N.I., “Bernstein-Type and A.A. Markov Inequalities for Analytic Functions”, Dokl. AN AzSSR, 31:8 (1975), 9–14