Location of the spectrum of a matrix in a domain bounded by a parabola
Matematičeskie trudy, Tome 27 (2024) no. 4, pp. 93-114 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper studies the problem of the location of the matrix spectrum inside the region bounded by a parabola. An algorithm for solving this spectral problem is proposed in terms of solving some generalized Lyapunov matrix equation.
@article{MT_2024_27_4_a5,
     author = {V. S. Prokhorov},
     title = {Location of the spectrum of a matrix in a domain bounded by a parabola},
     journal = {Matemati\v{c}eskie trudy},
     pages = {93--114},
     year = {2024},
     volume = {27},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2024_27_4_a5/}
}
TY  - JOUR
AU  - V. S. Prokhorov
TI  - Location of the spectrum of a matrix in a domain bounded by a parabola
JO  - Matematičeskie trudy
PY  - 2024
SP  - 93
EP  - 114
VL  - 27
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/MT_2024_27_4_a5/
LA  - ru
ID  - MT_2024_27_4_a5
ER  - 
%0 Journal Article
%A V. S. Prokhorov
%T Location of the spectrum of a matrix in a domain bounded by a parabola
%J Matematičeskie trudy
%D 2024
%P 93-114
%V 27
%N 4
%U http://geodesic.mathdoc.fr/item/MT_2024_27_4_a5/
%G ru
%F MT_2024_27_4_a5
V. S. Prokhorov. Location of the spectrum of a matrix in a domain bounded by a parabola. Matematičeskie trudy, Tome 27 (2024) no. 4, pp. 93-114. http://geodesic.mathdoc.fr/item/MT_2024_27_4_a5/

[1] Godunov S. K., Modern aspects of linear algebra, Amer. Math. Soc., Providence, RI, 1998 | MR

[2] Daletskii Yu. L., Krein M. G., Stability of solutions to differential equations in Banach spaces, Nauka, M., 1970

[3] Mazko A. G., Localization of the spectrum and stability of dynamical systems, Trudy Inst. Mat., Nats. Akad. Nauk Ukrain, 28, 1999 (in Russian)

[4] Mazko A. G., Matrix equations, spectral problems and stability of dynamic systems, Cambridge Scientific Publishers, Cambridge, 2008 | MR

[5] Bulgak A., Bulgak H., Linear algebra, Selcuk University, Konya, 2001

[6] Bulgak A., Demidenko G., Matveeva I., “On location of the matrix spectrum inside an ellipse”, Selcuk J. Appl. Math., 4:1 (2003), 25–41 | MR

[7] Demidenko G., “On a functional approach to spectral problems of linear algebra”, Selcuk J. Appl. Math., 2:2 (2001), 39–52

[8] Demidenko G. V., Prokhorov V. S., “On location of the matrix spectrum with respect to a parabola”, Mat. trudy, 26:1 (2023), 26-40

[9] Sadkane M., Touhami A., “On modifications to the spectral dichotomy algorithm”, Numer. Funct. Anal. Optim., 34:7 (2013), 791–817 | DOI | MR

[10] Biberdorf E. A., Blinova M. A., Popova N. I., “Modifications of the dichotomy method of a matrix spectrum and their application to stability tasks”, Numer. Anal. Appl., 11:2 (2018), 108–120 | DOI | MR

[11] Biberdorf E. A., “Development of the matrix spectrum dichotomy method”, Continuum Mechanics, Applied Mathematics and Scientific Computing: Godunov's Legacy – A Liber Amicorum to Professor Godunov, eds. Demidenko G.V., Romenski E., Toro E., Dumbser M., Springer Nature, Cham, 2020, 37–43 | DOI | MR

[12] Traore S., Dosso M., “Spectral dichotomy methods of a matrix with respect to the general equation of the parabola”, Eur. J. Pure Appl. Math., 15:2 (2022), 681–725 | DOI | MR

[13] Demidenko G. V., Matrix equations, Tutorial, Novosibirsk State University, Novosibirsk, 2009 (in Russian)