@article{MT_2024_27_4_a4,
author = {A. I. Zadorin},
title = {Application of {Taylor's} formula to polynomial approximation of a function of two variables with large gradients},
journal = {Matemati\v{c}eskie trudy},
pages = {81--92},
year = {2024},
volume = {27},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2024_27_4_a4/}
}
TY - JOUR AU - A. I. Zadorin TI - Application of Taylor's formula to polynomial approximation of a function of two variables with large gradients JO - Matematičeskie trudy PY - 2024 SP - 81 EP - 92 VL - 27 IS - 4 UR - http://geodesic.mathdoc.fr/item/MT_2024_27_4_a4/ LA - ru ID - MT_2024_27_4_a4 ER -
A. I. Zadorin. Application of Taylor's formula to polynomial approximation of a function of two variables with large gradients. Matematičeskie trudy, Tome 27 (2024) no. 4, pp. 81-92. http://geodesic.mathdoc.fr/item/MT_2024_27_4_a4/
[1] Zorich V. A., Mathematical analysis, Springer, Berlin, 2015 | MR
[2] Shishkin G. I., Mesh approximations of singularly perturbed elliptic and parabolic equations, Ural Otd. Ross. Akad. Nauk, Yekaterinburg, 1992 (in Russian)
[3] Kellogg R. B., Tsan A., “Analysis of some difference approximations for a singular perturbation problem without turning points”, Math. Comput., 32 (1978), 1025–1039 | DOI | MR
[4] Roos H. G., Stynes M., and Tobiska L., Numerical Methods for Singularly Perturbed Differential Equations, Convection-Diffusion and Flow problems, Springer, Berlin, 2008 | MR
[5] Zadorin A. I., Zadorin N. A., “Non-Polynomial Interpolation of Functions with Large Gradients and Its Application”, Comput. Math. Math. Phys., 61:2 (2021), 167–176 | DOI | DOI | MR
[6] Zadorin A. I., “Formulas for Numerical Differentiation of Functions with Large Gradients”, Numer. Anal. Appl., 16:1 (2023), 14–21 | DOI | DOI | MR
[7] Zadorin A.I., “Formulas for Numerical Differentiation on a Uniform Mesh in the Presence of a Boundary Layer”, Comput. Math. Math. Phys., 64:6 (2024), 1167–1175 | DOI | MR
[8] Zadorin A. I., “Application of a Taylor series to approximate a function with large gradients”, Sib. Electron. Math. Rep., 20:4 (2023), 1420–1429 | MR
[9] Ranjan R., Prasad H. S., “A novel approach for the numerical approximation to the solution of singularly perturbed differential-difference equations with small shifts”, J. of Applied Mathematics and Computing, 65 (2021), 403–427 | DOI | MR