@article{MT_2024_27_4_a3,
author = {A. V. Greshnov and S. A. Greshnova},
title = {The domains of admissible parameters of {Box-quasimetrics} of canonical {Heisenberg} groups and their generalizations},
journal = {Matemati\v{c}eskie trudy},
pages = {42--56},
year = {2024},
volume = {27},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2024_27_4_a3/}
}
TY - JOUR AU - A. V. Greshnov AU - S. A. Greshnova TI - The domains of admissible parameters of Box-quasimetrics of canonical Heisenberg groups and their generalizations JO - Matematičeskie trudy PY - 2024 SP - 42 EP - 56 VL - 27 IS - 4 UR - http://geodesic.mathdoc.fr/item/MT_2024_27_4_a3/ LA - ru ID - MT_2024_27_4_a3 ER -
%0 Journal Article %A A. V. Greshnov %A S. A. Greshnova %T The domains of admissible parameters of Box-quasimetrics of canonical Heisenberg groups and their generalizations %J Matematičeskie trudy %D 2024 %P 42-56 %V 27 %N 4 %U http://geodesic.mathdoc.fr/item/MT_2024_27_4_a3/ %G ru %F MT_2024_27_4_a3
A. V. Greshnov; S. A. Greshnova. The domains of admissible parameters of Box-quasimetrics of canonical Heisenberg groups and their generalizations. Matematičeskie trudy, Tome 27 (2024) no. 4, pp. 42-56. http://geodesic.mathdoc.fr/item/MT_2024_27_4_a3/
[1] Arutyunov A. V. and A. V. Greshnov A. V., “$(q_1,q_2)$-quasimetric spaces. Covering mappings and coincidence points”, Izvestiya: Mathematics, 82:2 (2018), 245–272 | DOI | DOI | MR
[2] Arutyunov A. V. and A. V. Greshnov A. V., “Theory of $(q_1, q_2)$-quasimetric spaces and coincidence points”, Dokl. Math., 94 (2016), 434-437 | DOI | DOI | MR
[3] Wilson W. A., “On quasi-metric spaces”, American J. of Math., 53 (1931), 675–684 | DOI | MR
[4] Arutyunov A. V. and Greshnov A. V., “$(q_1,q_2)$-quasimetric spaces. Covering mappings and coincidence points. A review of the results”, Fixed Point Theory, 23 (2022), 473-486 | DOI | MR
[5] Greshnov A. V., “$(q_1,q_2)$-quasimetrics bi-Lipschitz equivalent to 1-quasimetrics”, Siberian Adv. Math., 27 (2017), 253–262
[6] Vodopyanov S., “Geometry of Carnot–Carathéodory Spaes and Differentiability of Mappings”, Contemporary Mathematis, 424, AMS, Providene, RI, 2007, 247–301 | DOI | MR
[7] Karmanova M. and Vodop'yanov S., “Geometry of Carnot-Carathéodory spaces, differentiability, coarea and area formulas”, Analysis and Mathematical Physics, Trends Math., Birkhauser, Basel, 2009, 233–335 | MR
[8] Greshnov A. V., Tryamkin M. V., “Exact values of constants in the generalized triangle inequality for some $(1,q_2)$-quasimetrics on canonical Carnot groups”, Math. Notes. 2015, 98:4, 694–698 | DOI | MR
[9] Nagel A., Stein E. M. and Wainger S., “Balls and metrics defined by vector fields. I. Basic properties”, Acta Math., 155:1–2 (1985), 103–147 | DOI | MR
[10] Greshnov A. and Potapov V., “About coincidence points theorems on 2-step Carnot groups with 1-dimensional centre equipped with Box-quasimetrics”, AIMS Mathematics, 8:3 (2023), 6191–6205 | DOI | MR
[11] Greshnov A. V., “On finding the exact values of the constant in a $(1,q_2)$-generalized triangle inequality for Box-quasimetrics on 2-step Carnot groups with 1-dimensional center”, Sib. El. Math. Reports, 18:2 (2021), 1251–1260 | MR
[12] Ovsyannikov L. V., Group Analysis of Differential Equations, Academic, New York, 1982 | MR
[13] Postnikov M. M., Lectures in Geometry. Semester V: Lie Groups and Lie Algebras, Mir, M., 1982 | MR
[14] Agrachev A., Barilari D., Boscain U., A Comprehensive Introduction to sub-Riemannian Geometry, Camb. Univ. Press, Cambridge, 2020 | MR
[15] Bonfiglioli A., Lanconelli E., Uguzzoni F., Stratified Lie groups and potential theory for their sub-Laplacian, Springer-Verl., Berlin–Heidelberg, 2007 | MR