On the core of Aubin extension of almost positive game
Matematičeskie trudy, Tome 27 (2024) no. 4, pp. 26-41 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The aim of the paper is to study the core of the famous Aubin extension for almost positive games. These games are characterized by nonnegativity of the Harsanyi dividends of their non-singleton coalitions. So, being convex, these games have their Shapley values inside the classical core. We prove that for the Aubin extension of these games much more stronger result holds: the core of this extension of any almost positive game consists of its Shapley value only. The approach developed is based, mostly, on close relation between the cores and super-differentials of fuzzy cooperative games, mentioned by J. -P. Aubin.
@article{MT_2024_27_4_a2,
     author = {V. A. Vasil'ev},
     title = {On the core of {Aubin} extension of almost positive game},
     journal = {Matemati\v{c}eskie trudy},
     pages = {26--41},
     year = {2024},
     volume = {27},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2024_27_4_a2/}
}
TY  - JOUR
AU  - V. A. Vasil'ev
TI  - On the core of Aubin extension of almost positive game
JO  - Matematičeskie trudy
PY  - 2024
SP  - 26
EP  - 41
VL  - 27
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/MT_2024_27_4_a2/
LA  - ru
ID  - MT_2024_27_4_a2
ER  - 
%0 Journal Article
%A V. A. Vasil'ev
%T On the core of Aubin extension of almost positive game
%J Matematičeskie trudy
%D 2024
%P 26-41
%V 27
%N 4
%U http://geodesic.mathdoc.fr/item/MT_2024_27_4_a2/
%G ru
%F MT_2024_27_4_a2
V. A. Vasil'ev. On the core of Aubin extension of almost positive game. Matematičeskie trudy, Tome 27 (2024) no. 4, pp. 26-41. http://geodesic.mathdoc.fr/item/MT_2024_27_4_a2/

[1] Shapley L. S., “Cores of convex games”, Int. J. Game Th., 1 (1971), 11–26 | DOI | MR

[2] Vasil'ev V. A., “An analog of the Bondareva-Shapley theorem I. The non-emptyness of the core of a fuzzy game”, Autom. and Remote Control, 80 (2019), 1148–1163 | DOI | MR

[3] Vasil'ev V. A., “Core and super-differential of a fuzzy TU-cooperative game”, Autom. and Remote Control, 82 (2021), 926–934 | DOI | MR

[4] Aubin J.-P., Optima and Equilibria, Springer-Verlag, Berlin-Heidelberg, 1993 | MR

[5] Bondareva O. N., “Some applications of linear programming methods to the theory of coopertive games”, Problemi Kibernetiki, 10 (1963), 119–140

[6] Shapley L. S., “On balanced sets and cores”, Naval Res. Logist. Quart., 14 (1967), 453–460 | DOI

[7] von Neumann J. and Morgenstern O., Theory of Games and Economic Behavior, Princeton University Press, Princeton, 1944 | MR

[8] Rosenmüller J., Kooperative Spiele und Märkte, Springer-Verlag, Berlin etc, 1971 | MR

[9] Dehez P., “On Harsanyi dividends and asymmetric values”, Int. Game Theory Rev., 19:3 (2017), 1–36 | DOI | MR

[10] Shapley L. S., “A value for $n$-person games”, Annals of Mathematics Studies, 28 (1953), 307–317 | MR

[11] Peleg B. and Sudhölter P., Introduction to the Theory of Cooperative Games, Kluwer Academic Publishers, Boston, 2003 | MR

[12] Aubin J.-P., Mathematical Methods of Games and Economic Theory, North-Holland, Amsterdam, 1979 | MR

[13] Ekeland I., Éléments D' Économie Mathématique, Hermann, Paris, 1983 | MR

[14] Aubin J.-P., “Cooperative fuzzy games”, Math. Oper. Res., 6 (1981), 1–13 | DOI | MR

[15] Rockafellar R. T., Convex Analysis, Princeton University Press, Princeton, New Jersey, 1970 | MR