On the asymptotics of the Alexsandrov`s $n$-width compact infinitely smooth periodic function of the Gevrey's class
Matematičeskie trudy, Tome 27 (2024) no. 4, pp. 5-18 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The asymptotics of the Alexandrov's $n$-width of a compact of the $C^\infty$-smooth periodic functions of the Gevrey's class finitely embedded in the space of the $C$ continuous functions on a unit circle of the $S$ functions has been obtained.
@article{MT_2024_27_4_a0,
     author = {V. N. Belykh},
     title = {On the asymptotics of the {Alexsandrov`s} $n$-width compact infinitely smooth periodic function of the {Gevrey's} class},
     journal = {Matemati\v{c}eskie trudy},
     pages = {5--18},
     year = {2024},
     volume = {27},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2024_27_4_a0/}
}
TY  - JOUR
AU  - V. N. Belykh
TI  - On the asymptotics of the Alexsandrov`s $n$-width compact infinitely smooth periodic function of the Gevrey's class
JO  - Matematičeskie trudy
PY  - 2024
SP  - 5
EP  - 18
VL  - 27
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/MT_2024_27_4_a0/
LA  - ru
ID  - MT_2024_27_4_a0
ER  - 
%0 Journal Article
%A V. N. Belykh
%T On the asymptotics of the Alexsandrov`s $n$-width compact infinitely smooth periodic function of the Gevrey's class
%J Matematičeskie trudy
%D 2024
%P 5-18
%V 27
%N 4
%U http://geodesic.mathdoc.fr/item/MT_2024_27_4_a0/
%G ru
%F MT_2024_27_4_a0
V. N. Belykh. On the asymptotics of the Alexsandrov`s $n$-width compact infinitely smooth periodic function of the Gevrey's class. Matematičeskie trudy, Tome 27 (2024) no. 4, pp. 5-18. http://geodesic.mathdoc.fr/item/MT_2024_27_4_a0/

[1] Babenko K. I., “Estimating the quality of computational algorithms. 1; 2”, Computer methods in applied mechanics and engineering, 7, North-Holland Publishing Company, NY, 1976, 47–73 ; 135–152 | DOI | MR

[2] Belykh V. N., “Unsaturated algorithms for the numerical solution of elliptic boundary value problems in smooth axisymmetric domains”, Siberian Advances in Mathematics, 32:3 (2022), 157–185 | DOI | DOI | MR

[3] Anuchina N. N., Babenko K. I., Godunov S. K., et al., Theoretical Foundations and Design of Numerical Algorithms for Problems of Mathematical Physics, ed. K. I. Babenko, Nauka, M., 1977 (in Russian); 2-е издание, М.-Ижевск. РХД, 2002

[4] Babenko K. I., Foundations of numerical analysis, Nauka, M., 1986; 2nd ed., Regulyarnaya i Khaoticheskaya Dinamika, M.-Izhevsk, 2002 (in Russian)

[5] Belykh V. N., “On the best approximation properties of $C^\infty$-smooth functions on an interval of the real axis (to the phenomenon of unsaturated numerical methods)”, Sib. Math. J., 46:3 (2005), 373–385 | DOI | MR

[6] Belykh V. N., “Estimates of the Alexandrov's $n$-width of a the compact of $C^{\,\infty}$-smooth functions on a finite segment”, Sib. Math. J., 65:1 (2024), 3–14 | DOI | DOI | MR

[7] Tikhomirov V. M., Some Problems of Approximation Theory, Moscow University, M., 1976 (in Russian)

[8] Aleksandroff P. S., “Uber die Urysonsche Konstanten”, Fund. Math., 20 (1933), 140-150 | DOI

[9] Volkov Yu. S., “One problem of extremal functional interpolation and the Favard constants”, Dokl. Math., 102:3 (2020), 474–477 | DOI

[10] Volkov Yu. S., “Efficient computation of Favard constants and their connection to Euler polynomials and numbers”, SEMI, 17, 1921–1942 | DOI