@article{MT_2024_27_4_a0,
author = {V. N. Belykh},
title = {On the asymptotics of the {Alexsandrov`s} $n$-width compact infinitely smooth periodic function of the {Gevrey's} class},
journal = {Matemati\v{c}eskie trudy},
pages = {5--18},
year = {2024},
volume = {27},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2024_27_4_a0/}
}
TY - JOUR AU - V. N. Belykh TI - On the asymptotics of the Alexsandrov`s $n$-width compact infinitely smooth periodic function of the Gevrey's class JO - Matematičeskie trudy PY - 2024 SP - 5 EP - 18 VL - 27 IS - 4 UR - http://geodesic.mathdoc.fr/item/MT_2024_27_4_a0/ LA - ru ID - MT_2024_27_4_a0 ER -
V. N. Belykh. On the asymptotics of the Alexsandrov`s $n$-width compact infinitely smooth periodic function of the Gevrey's class. Matematičeskie trudy, Tome 27 (2024) no. 4, pp. 5-18. http://geodesic.mathdoc.fr/item/MT_2024_27_4_a0/
[1] Babenko K. I., “Estimating the quality of computational algorithms. 1; 2”, Computer methods in applied mechanics and engineering, 7, North-Holland Publishing Company, NY, 1976, 47–73 ; 135–152 | DOI | MR
[2] Belykh V. N., “Unsaturated algorithms for the numerical solution of elliptic boundary value problems in smooth axisymmetric domains”, Siberian Advances in Mathematics, 32:3 (2022), 157–185 | DOI | DOI | MR
[3] Anuchina N. N., Babenko K. I., Godunov S. K., et al., Theoretical Foundations and Design of Numerical Algorithms for Problems of Mathematical Physics, ed. K. I. Babenko, Nauka, M., 1977 (in Russian); 2-е издание, М.-Ижевск. РХД, 2002
[4] Babenko K. I., Foundations of numerical analysis, Nauka, M., 1986; 2nd ed., Regulyarnaya i Khaoticheskaya Dinamika, M.-Izhevsk, 2002 (in Russian)
[5] Belykh V. N., “On the best approximation properties of $C^\infty$-smooth functions on an interval of the real axis (to the phenomenon of unsaturated numerical methods)”, Sib. Math. J., 46:3 (2005), 373–385 | DOI | MR
[6] Belykh V. N., “Estimates of the Alexandrov's $n$-width of a the compact of $C^{\,\infty}$-smooth functions on a finite segment”, Sib. Math. J., 65:1 (2024), 3–14 | DOI | DOI | MR
[7] Tikhomirov V. M., Some Problems of Approximation Theory, Moscow University, M., 1976 (in Russian)
[8] Aleksandroff P. S., “Uber die Urysonsche Konstanten”, Fund. Math., 20 (1933), 140-150 | DOI
[9] Volkov Yu. S., “One problem of extremal functional interpolation and the Favard constants”, Dokl. Math., 102:3 (2020), 474–477 | DOI
[10] Volkov Yu. S., “Efficient computation of Favard constants and their connection to Euler polynomials and numbers”, SEMI, 17, 1921–1942 | DOI