Isometric isomorphism of reflexive neutral strongly facially symmetric spaces
Matematičeskie trudy, Tome 27 (2024) no. 3, pp. 99-110 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem on geometric characterization of state spaces of operator algebras is important in the theory of such algebras. In the mid-80's, Friedman and Russo introduced facially symmetric spaces for geometric characterization of the predual spaces of JBW*-triples that admit an algebraic structure. Many properties that are required in such characterizations are natural assumptions on state spaces of physical systems. These spaces are regarded as a geometric model for states in quantum mechanics. In the present article, we prove that, for all reflexive atomic neutral strongly facially symmetric spaces $X$ and $Y$, if a transform $P: M_X \rightarrow M_Y$ preserves both orthogonality between geometric triponents and the transition pseudo-probabilities then $P$ can be extended to an isometric isomorphism from $X^*$ to $Y^*$.
@article{MT_2024_27_3_a5,
     author = {J. Kh. Seypullaev and K. B. Kalenbaev},
     title = {Isometric isomorphism of reflexive neutral strongly facially symmetric spaces},
     journal = {Matemati\v{c}eskie trudy},
     pages = {99--110},
     year = {2024},
     volume = {27},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2024_27_3_a5/}
}
TY  - JOUR
AU  - J. Kh. Seypullaev
AU  - K. B. Kalenbaev
TI  - Isometric isomorphism of reflexive neutral strongly facially symmetric spaces
JO  - Matematičeskie trudy
PY  - 2024
SP  - 99
EP  - 110
VL  - 27
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/MT_2024_27_3_a5/
LA  - ru
ID  - MT_2024_27_3_a5
ER  - 
%0 Journal Article
%A J. Kh. Seypullaev
%A K. B. Kalenbaev
%T Isometric isomorphism of reflexive neutral strongly facially symmetric spaces
%J Matematičeskie trudy
%D 2024
%P 99-110
%V 27
%N 3
%U http://geodesic.mathdoc.fr/item/MT_2024_27_3_a5/
%G ru
%F MT_2024_27_3_a5
J. Kh. Seypullaev; K. B. Kalenbaev. Isometric isomorphism of reflexive neutral strongly facially symmetric spaces. Matematičeskie trudy, Tome 27 (2024) no. 3, pp. 99-110. http://geodesic.mathdoc.fr/item/MT_2024_27_3_a5/

[1] Friedman Y., Russo B., “A geometric spectral theorem”, Quart. J. Math. Oxford Ser., 37:147 (1986), 263–277 | DOI | MR

[2] Friedman Y., Russo B., “Affine structure of facially symmetric spaces”, Math. Proc. Cambridge Philos. Soc., 106:1 (1989), 107–124 | DOI | MR

[3] Friedman Y., Russo B., “Some affine geometric aspects of operator algebras”, Pacific. J. Math., 137:1 (1989), 123–144 | DOI | MR

[4] Friedman Y., Russo B., “Geometry of the dual ball of the spin factor”, Proc. London Math. Soc., 65:1 (1992), 142–174 | DOI | MR

[5] Friedman Y., Russo B., “Classification of atomic facially symmetric spaces”, Canad. J. Math., 45:1 (1993), 33–87 | DOI | MR

[6] Neal M., Russo B., “State space of JB*-triples”, Math. Ann., 328:4 (2004), 585–624 | DOI | MR

[7] Ibragimov M. M., Kudaybergenov K. K., Seypullaev J. X., “Geometric characterization of real JBW factors”, Vladikavkazskii Matematicheskii Zhurnal, 20:1 (2018), 61–68 | DOI

[8] Kudaybergenov K. K., Seypullaev J. X., “Description of facially symmetric spaces with unitary tripotents”, Siberian Advances in Mathematics, 30:2 (2020), 117–123 | DOI | MR

[9] Kudaybergenov K. K., Seypullaev J. Kh., “Characterization of JBW-Algebras with Strongly Facially Symmetric Predual Space”, Mathematical Notes, 107:4 (2020), 600–608 | DOI | MR

[10] Seypulaev J. X., “Sharacterizations of geometric tripotents in reflexive complex SFS-spaces”, Lobachevskii Journal of Mathematics, 40:12 (2019), 2111–2115 | DOI | MR

[11] Seypulaev J. X., “Finite geometric tripotents and finite SFS-spaces”, Uzbek Math. Journal, 2020, no. 4, 140–148 | DOI

[12] Ding G. G, “The 1-Lipschitz mapping between the unit spheres of two Hilbert spaces can be extended to a real linear isometry of the whole space”, Sci. China Ser., 45:4 (2002), 479–483 | DOI | MR

[13] Seypullaev J. X., “Geometric characterization of Hilbert spaces”, Uzbek Mathematical Journal, 2008, no. 2, 107–112

[14] Ibragimov M. M., Tleumuratov S. J., Seypulaev J., “Some geometric properties of a strongly facially symmetric space”, Methods of functional analysis and topology, 2005, no. 11, 234–238 http://mfat.imath.kiev.ua/article/?id=298 | MR