Stability of solutions to linear systems of population dynamics differential equations with variable delay
Matematičeskie trudy, Tome 27 (2024) no. 3, pp. 74-98 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of stability of the trivial equilibrium position of some compartment and stage-dependent models of population dynamics based on linear differential equations with variable delay is investigated. Sufficient conditions for the asymptotic stability of the trivial equilibrium position of the studied systems of differential equations based on the method of monotone operators and the properties of M-matrices are established. A linear model of the dynamics of HIV-1 infection in the body of an infected person is considered. Sufficient conditions for asymptotic stability of a trivial solution to the HIV-1 infection dynamics model have been established. The found ratios for the model parameters are interpreted as conditions for the eradication of HIV-1 infection due to non-specific factors of the immune system.
@article{MT_2024_27_3_a4,
     author = {N. V. Pertsev},
     title = {Stability of solutions to linear systems of population dynamics differential equations with variable delay},
     journal = {Matemati\v{c}eskie trudy},
     pages = {74--98},
     year = {2024},
     volume = {27},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2024_27_3_a4/}
}
TY  - JOUR
AU  - N. V. Pertsev
TI  - Stability of solutions to linear systems of population dynamics differential equations with variable delay
JO  - Matematičeskie trudy
PY  - 2024
SP  - 74
EP  - 98
VL  - 27
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/MT_2024_27_3_a4/
LA  - ru
ID  - MT_2024_27_3_a4
ER  - 
%0 Journal Article
%A N. V. Pertsev
%T Stability of solutions to linear systems of population dynamics differential equations with variable delay
%J Matematičeskie trudy
%D 2024
%P 74-98
%V 27
%N 3
%U http://geodesic.mathdoc.fr/item/MT_2024_27_3_a4/
%G ru
%F MT_2024_27_3_a4
N. V. Pertsev. Stability of solutions to linear systems of population dynamics differential equations with variable delay. Matematičeskie trudy, Tome 27 (2024) no. 3, pp. 74-98. http://geodesic.mathdoc.fr/item/MT_2024_27_3_a4/

[1] Marchuk G. I., Mathematical models in immunology. Computational methods and experiments, 3-end., Nauka, M., 1991 (in Russian) | MR

[2] Pertsev N. V., “Application of differential equations with variable delay in the compertmental models of living systems”, Sib. J. Ind. Math., 24:3 (2021), 55–73

[3] Pertsev N. V., “Two-sided estimates for solutions to the Cauchy problem for wazewski linear differential systems with delay”, Sib. Math. J., 54:6 (2013), 1368–1379 | MR

[4] Pertsev N. V., “Global solvability and estimates of solutions to the Cauchy problem for the retarded functional differential equations that are used to model living systems”, Sib. Math. J., 59:1 (2018), 143–157 | MR

[5] Kolmanovskii V. B., Nosov V. R., Stability and periodic regimes of controlled systems with aftereffect, Nauka, M., 1981 | MR

[6] El'sgolts L. E., Norkin S. B., An introduction to the theory of differential equations with a deviating argument, Nauka, M., 1971 | MR

[7] Aleksandrov A. Yu., “Construction of the Lyapunov-Krasovskii functionals for some classes of positive delay systems”, Sib. Math. J., 59:5 (2018), 957–969 | MR

[8] Demidenko G. V., Matveeva I. I., “The second Lyapunov method for time-delay systems”, Functional Differential Equations and Applications, Springer Proceedings in Mathematics $\$ Statistics, 379, eds. Domoshnitsky A., Rasin A., Padhi S., Springer Nature, Singapore, 2021, 145–167 | DOI | MR

[9] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F., Elements of the modern theory of functional-differential equations. Methods and applications, Institute of Computer Science, M., 2002 | MR

[10] Gusarenko S. A., “Stability criterion for linear differential equations with a delayed argument”, Russ. Math., 2022, no. 12, 34–56

[11] Collatz L., Functional analysis and computational mathematics, Mir, M., 1969

[12] Krasnosel'skii M. A., Vainikko G. M., Zabreiko P. P., Rutitskii Ya. B., Stetsenko V. Ya., Approximate Solution of Operator Equations, Nauka, M., 1969 | MR

[13] Tsalyuk Z. B., “Volterra integral equations”, Results of Science and Technology. Ser. Mat. Analiz, 15 (1977), 131–198 (in Russian)

[14] Berman A., Plemmons R. J., Nonnegative Matrices in the Mathematical Sciences, Academic Press, New York, 1979 | MR

[15] Voevodin V. V., Kuznetsov Yu. A., Matrices and Calculations, Nauka, M., 1984 | MR

[16] Demidovich B. P., Lectures on mathematical theory of stability, Nauka, M., 1967 | MR

[17] Pertsev N. V., Bocharov G. A., Loginov K. K., “Mathematical Modeling of the Initial Period of Spread of HIV-1 Infection in the Lymphatic Node”, Math. Biol. Bioinf., 19:1 (2024), 112–154 | DOI

[18] Nakaoka S., Shingo I., Sato K., “Dynamics of HIV infection in lymphoid tissue network”, J. Math. Biol., 72 (2016), 909–938 | DOI | MR

[19] Savinkov R., Grebennikov D., Puchkova D., Chereshnev V., Sazonov I., Bocharov G., “Graph Theory for Modeling and Analysis of the Human Lymphatic System”, Mathematics, 8:12 (2020), 2236 | DOI

[20] Obolenskii A. Yu., “Stability of solutions of autonomous wazewski systems with delayed action”, Ukr. Math. J., 35 (1983), 574–579 | MR

[21] Pertsev N. V., “Stability of linear delay differential equations arising in models of living systems”, Sib. Adv. Math., 22:2 (2019), 157–174

[22] Pertsev N. V., Loginov K. K., “Finding the parameters of exponential estimates of solutions to the Cauchy problem for some systems of linear delay differential equations”, Sib. Electron. Math. Izv., 18:2 (2021), 1307–1318 | MR

[23] Razzhevaikin V. N., Tyrtyshnikov E. E., “On the Construction of Stability Indicators for Nonnegative Matrices”, Math Notes, 109:3 (2021), 407–418 | DOI | MR

[24] Mozokhina A. S., Mukhin S. I., Lobov G. I., “Pump efficiency of lymphatic vessels: numeric estimation”, Russ. J. Numer. Anal. Math. Mod., 34:5 (2019), 261–268 | DOI | MR

[25] Mozokhina A. S., Mukhin S. I., “Some exact solutions to the problem of a liquid flow in a contracting elastic vessel”, Math. Models and Comp. Simul., 11 (2019), 894–904 | DOI | MR

[26] Pertsev N., Loginov K., Bocharov G., “Nonlinear effects in the dynamics of HIV-1 infection predicted by mathematical model with multiple delays”, Disc. Cont. Dyn. Syst. – Series S, 13:9 (2020), 2365–2384 | MR

[27] Baker C. T. H., Paul C. A. H., “Issues in the numerical solution of evolutionary delay differential equations”, Adv. Comp. Math., 1995, no. 3, 171–196 | DOI | MR

[28] Baker C. T. H., “Retarded differential equations”, J. Comp. Appl. Math., 125 (2000), 309–335 | DOI | MR

[29] Baker C. T. H., Bocharov G. A., Paul C. A. H., Rihan F. A., “Computational modelling with functional differential equations: Identification, selection, and sensitivity”, Appl. Num. Math., 53 (2005), 107–129 | DOI | MR