Unique recovery of a Lambertian curve from stereo-couple of images
Matematičeskie trudy, Tome 27 (2024) no. 3, pp. 52-73 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Within the framework of statements of inverse problems of photometry, the problems of uniqueness of determining the location and luminosity of a curve, radiating by Lambert's law, are explored from its stereo-couple of images. The reasons for the ambiguity in determining the location of such curves are studied. We establish criteria for the uniqueness of the solution to the problem of recovering luminous curves by stereo-couples of images for arbitrary weight functions. The results are applied to specific families of weight functions that model the degree of transparency of a medium, its absorption or scattering.
@article{MT_2024_27_3_a3,
     author = {E. Yu. Derevtsov},
     title = {Unique recovery of a {Lambertian} curve from stereo-couple of images},
     journal = {Matemati\v{c}eskie trudy},
     pages = {52--73},
     year = {2024},
     volume = {27},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2024_27_3_a3/}
}
TY  - JOUR
AU  - E. Yu. Derevtsov
TI  - Unique recovery of a Lambertian curve from stereo-couple of images
JO  - Matematičeskie trudy
PY  - 2024
SP  - 52
EP  - 73
VL  - 27
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/MT_2024_27_3_a3/
LA  - ru
ID  - MT_2024_27_3_a3
ER  - 
%0 Journal Article
%A E. Yu. Derevtsov
%T Unique recovery of a Lambertian curve from stereo-couple of images
%J Matematičeskie trudy
%D 2024
%P 52-73
%V 27
%N 3
%U http://geodesic.mathdoc.fr/item/MT_2024_27_3_a3/
%G ru
%F MT_2024_27_3_a3
E. Yu. Derevtsov. Unique recovery of a Lambertian curve from stereo-couple of images. Matematičeskie trudy, Tome 27 (2024) no. 3, pp. 52-73. http://geodesic.mathdoc.fr/item/MT_2024_27_3_a3/

[1] Mikhailov A. P., Chibunichev A. G., Photogrammetry, Uchebnik dlia vuzov, ed. A. G. Chibunichev, Izd-vo MIIGAiK, M., 2016

[2] Gelfand I. M., Graev M. I., Vilenkin N. Ya., Integral Geometry And Representation Theory, Generalized Functions, 5, Academic Press inc., New York, 1966 | MR | MR

[3] Lobanov A. N., Zhurkin I. G., Automation of photogrammetric processes, Nedra, M., 1980

[4] Softline, Photogrammetry from UAVs. Drone cartography, , 2018 https://slddigital.com/article/Kartografiya-po-bespilotnikam

[5] Yankelevich S. S., Radchenko L. K., Antonov E. S., “From a multi-purpose cartographic resource to a "Smart Map"”, Vestnik SGUGiT, 23:1 (2018), 142–155

[6] Kireitov V. R., “On the problem of reconstructing an optical surface from its images”, Funkts. analiz i ego pril., 10:3 (1975), 45–54

[7] Kireitov V. R., Inverse problems of Photometry, Vyichislitel'ny tsentr SO AN SSSR, Novosibirsk, 1983

[8] Derevtsov E. Yu., “Reconstruction of Parameters of a Set of Radiant Points from Their Images”, Siberian Adv. Math., 33:4 (2023), 261–275 | DOI | MR

[9] Derevtsov E. Yu., “Unique Reconstruction of a Lambertian Optical Surface from Images”, Siberian Adv. Math., 34:3 (2024), 196–208 | DOI | MR

[10] Herman G. T., Image Reconstruction from Projections. The Fundamentals of Computerized Tomography, Academic Press, New York–London, 1980 | MR

[11] Gardner R. J., Geometric Tomography, 2nd edition, Cambridge University Press, New York, 2006 | MR