The problem of an unknown boundary for generalized Radon transforms in even-dimensional space
Matematičeskie trudy, Tome 27 (2024) no. 3, pp. 5-19 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the problem of integral geometry, in the case when functions depending on $2n$ variables are integrated over hyperplanes in $n$-dimensional Euclidean space. Such an integration is called here the generalized Radon transform, which coincides with the classical one if the integrand depends on only on $n$ integration variables. In a broad sense, the problem of integral geometry consists in obtaining information about the integrand by values some set of integrals. Here the task is to determination of discontinuity surfaces of the integrand. The uniqueness of the solution is proved, the formula is obtained and the corresponding algorithm is proposed. The results of this work may be used in the theory and practice of probing.
@article{MT_2024_27_3_a0,
     author = {D. S. Anikonov and D. S. Konovalova},
     title = {The problem of an unknown boundary for generalized {Radon} transforms in even-dimensional space},
     journal = {Matemati\v{c}eskie trudy},
     pages = {5--19},
     year = {2024},
     volume = {27},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2024_27_3_a0/}
}
TY  - JOUR
AU  - D. S. Anikonov
AU  - D. S. Konovalova
TI  - The problem of an unknown boundary for generalized Radon transforms in even-dimensional space
JO  - Matematičeskie trudy
PY  - 2024
SP  - 5
EP  - 19
VL  - 27
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/MT_2024_27_3_a0/
LA  - ru
ID  - MT_2024_27_3_a0
ER  - 
%0 Journal Article
%A D. S. Anikonov
%A D. S. Konovalova
%T The problem of an unknown boundary for generalized Radon transforms in even-dimensional space
%J Matematičeskie trudy
%D 2024
%P 5-19
%V 27
%N 3
%U http://geodesic.mathdoc.fr/item/MT_2024_27_3_a0/
%G ru
%F MT_2024_27_3_a0
D. S. Anikonov; D. S. Konovalova. The problem of an unknown boundary for generalized Radon transforms in even-dimensional space. Matematičeskie trudy, Tome 27 (2024) no. 3, pp. 5-19. http://geodesic.mathdoc.fr/item/MT_2024_27_3_a0/

[1] Anikonov D.S., Kazantsev S.G., Konovalova D.S., “A uniqueness result for the inverse problem of identifying boundaries from weighted Radon transform”, Journal of inverse and Ill-posed Problems, 31:6 (2023), 959–965 | DOI | MR

[2] Anikonov D. S., Balakina E. Yu., Konovalova D. S., “An inverse problem for generalized Radon transformation”, St. Petersburg Polytechnical State University Journal. Physics and Mathematics, 15:1 (2022) | DOI | MR

[3] D. S. Anikonov and D. S. Konovalova, “A Problem of Integral Geometry for a Family of Curves with Incomplete Data”, Doklady Mathematics, 92:2 (2015), 221–224 | DOI | MR

[4] D. S. Anikonov, “The unknown boundary problem for singular integral equations”, Doklady Mathematics, 81:2 (2010), 241–243 | DOI | MR

[5] Helgason C., Radon transforms, Mir, M., 1983

[6] R.Courant, Partial differential equations, New York Inc., 1962 | MR

[7] F. John, Plane vawes and spherical means, New York Inc., 1955

[8] Gelfand I.M., Graev M.I., Vilenkin N.Ya., Integral geometry and conecting questions for theory of represantations, Fizmatgiz, M., 1962 | MR

[9] Lavrentjev M.M., Savejev L.Ya., Theory of operations and ill-posed problems, Sobolev institute of mathematics, Novosibirsk, 2010

[10] Koganov A.V., “Problem of integral geometry with the measure of induction”, Computer investigations and modeling, 3:1 (2011), 31–37

[11] Kalnin T. G., Ivonin D. A., Abrosimov K. N., Grachev E. A., Sorokina N. V., “Analysis of tomographic images of the soil pore space structure by integral geometry methods”, Eurasian Soil Science, 54:9 (2021), 1400–1409 | DOI

[12] Temirgaliev N., Abikenova Sh. K., Azhgaliev Sh.U., Tauganbaeva G.E., “Radon transform in a scheme K(B)P-investigations and Monte-Carlo theory”, Reports of institutes. Mathematics, 2020, no. 3, 98–104

[13] Baev A.V., “Application of Radon transform for solution of inverse scattering problem in flat layered medium”, Journal of computation mathematics and mathematical phisics, 58:4 (2018), 550–560 | DOI

[14] Simonov E.N., Prokhorov A.V., Akintseva A.V., “Mathematical modeling of reconstruction for volume image in X-ray tomography with using holographic methods”, Messenger of South Ural University. Mathmatical modeling and programing, 12:3 (2019), 102–114

[15] Derevtsov E. Yu., Volkov Yu. S., Schuster T., “Differential equations and uniqueness theorems for the generalized attenuated ray transforms of tensor fields”, Numerical computations: Theory and algorithms, v. II, Lecture Notes in Computer Science, 11974, eds. Sergeyev Ya. D., Kvasov D. E., 2020, 97–111 | DOI | MR

[16] Vainberg E. I., Kazak I. A., Faingoiz M. L., “X-ray computerized back projection tomography with filtration by double differentiation. Procedure and information features”, Soviet J. Nondest. Test, 21:2 (1985), 106–113

[17] Svetov I.E., “Method of approcsimated inversion for Radon transform defined on functions and for normal Radon tansform with respect to vector and symmetric tensor fields in R3”, Siberian Electronic mathematical proceedings, 17 (2020), 1073–1087 | MR

[18] Mikhlin S.G., Multidimensional Singular Integral and Equations, Fizmatgiz, M., 1962 | MR

[19] Mikhlin S.G., Linear Partial Differntial Equations, Vysshaya shkola, M., 1977