Direct and inverse embedding theorems in different dimensions for one type of multianisotropic Sobolev spaces
Matematičeskie trudy, Tome 27 (2024) no. 2, pp. 144-155 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we obtain direct and inverse embedding theorems of different dimensions (trace theorems) for functions from the multianisotropic Sobolev space $W^{\mathfrak{N}}_2(\mathbb{R}^3)$ in the case of one class of completely regular polyhedron $\mathfrak{N}$.
@article{MT_2024_27_2_a7,
     author = {M. A. Khachaturyan},
     title = {Direct and inverse embedding theorems in different dimensions for one type of multianisotropic {Sobolev} spaces},
     journal = {Matemati\v{c}eskie trudy},
     pages = {144--155},
     year = {2024},
     volume = {27},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2024_27_2_a7/}
}
TY  - JOUR
AU  - M. A. Khachaturyan
TI  - Direct and inverse embedding theorems in different dimensions for one type of multianisotropic Sobolev spaces
JO  - Matematičeskie trudy
PY  - 2024
SP  - 144
EP  - 155
VL  - 27
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/MT_2024_27_2_a7/
LA  - ru
ID  - MT_2024_27_2_a7
ER  - 
%0 Journal Article
%A M. A. Khachaturyan
%T Direct and inverse embedding theorems in different dimensions for one type of multianisotropic Sobolev spaces
%J Matematičeskie trudy
%D 2024
%P 144-155
%V 27
%N 2
%U http://geodesic.mathdoc.fr/item/MT_2024_27_2_a7/
%G ru
%F MT_2024_27_2_a7
M. A. Khachaturyan. Direct and inverse embedding theorems in different dimensions for one type of multianisotropic Sobolev spaces. Matematičeskie trudy, Tome 27 (2024) no. 2, pp. 144-155. http://geodesic.mathdoc.fr/item/MT_2024_27_2_a7/

[1] Sobolev S.L., Some applications of functional analysis in mathematical physics, Nauka, M., 1988

[2] Demidenko G.V., Sobolev spaces and generalized solutions, Novosibirsk State Univ., Novosivirsk, 2015

[3] Slobodecki L.N., “Generalized Sobolev spaces and their application to boundary problems for partial differential equations”, Uch. Zap. Leningr. Gos. Ped. Inst., 197 (1958), 54–112

[4] Ghazaryan H.G., “The Newton polyhedron, spaces of differentiable functions and general theory of differential equations”, Arm. J. Math., 9:2 (2017), 102-145 | MR

[5] Karapetyan G.A., “Integral representation and embedding theorems for $n$-dimensional multianisotropic spaces with one anisotropy vertex”, Sib. Matem. J., 58:3 (2017), 573-590

[6] Karapetyan G.A., “Integral representations of functions and embedding theorems for multianisotropic spaces on the plane with one anisotropy vertex”, J. Contemp. Math. Anal., 51:6 (2016), 269-281 | DOI | MR

[7] Karapetyan G.A., Arakelyan M.K., “Estimation of multianisotropic kernels and their application to the embedding theorems”, Trans. A. Razmadze Math. Inst., 171:1 (2017), 48-56 | DOI | MR

[8] Karapetyan G.A., Petrosyan H.A., “Embedding theorems for multianisotropic spaces with two vertices of anisotropicity”, Proc. YSU A: Phys. Math. Sci., 51:1 (2017), 29-37 | DOI | MR

[9] Karapetyan G. A., “An integral representation and embedding theorems in the plane for multianisotropic spaces”, J. Contemp. Math. Anal., 52:6 (2017), 267-275 | DOI | MR

[10] Karapetyan G.A., Arakelyan M.K., “Embedding theorems for general multianisotropic spaces”, Math. Notes, 104:3 (2018), 422-438 | MR

[11] Khachaturyan M.A., Akopyan A.R., “On the traces of functions from multianisotropic Sobolev spaces”, Vestn. Russk.-Arm. Univ., Fiz.-Mat. Est. Nauki., 2021, no. 1, 56-77