Marchenko–Pastur law for the spectrum of a random weighted bipartite graph
Matematičeskie trudy, Tome 27 (2024) no. 2, pp. 131-143 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This study investigates the spectra of random weighted bipartite graphs. We establish that under specific assumptions on the edge probabilities, the empirical spectral distribution function of the graph's adjacency matrix converges to the symmetrized Marchenko–Pastur distribution function.
@article{MT_2024_27_2_a6,
     author = {A. V. Nadutkina and A. N. Tikhomirov and D. A. Timushev},
     title = {Marchenko{\textendash}Pastur law for the spectrum of a random weighted bipartite graph},
     journal = {Matemati\v{c}eskie trudy},
     pages = {131--143},
     year = {2024},
     volume = {27},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2024_27_2_a6/}
}
TY  - JOUR
AU  - A. V. Nadutkina
AU  - A. N. Tikhomirov
AU  - D. A. Timushev
TI  - Marchenko–Pastur law for the spectrum of a random weighted bipartite graph
JO  - Matematičeskie trudy
PY  - 2024
SP  - 131
EP  - 143
VL  - 27
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/MT_2024_27_2_a6/
LA  - ru
ID  - MT_2024_27_2_a6
ER  - 
%0 Journal Article
%A A. V. Nadutkina
%A A. N. Tikhomirov
%A D. A. Timushev
%T Marchenko–Pastur law for the spectrum of a random weighted bipartite graph
%J Matematičeskie trudy
%D 2024
%P 131-143
%V 27
%N 2
%U http://geodesic.mathdoc.fr/item/MT_2024_27_2_a6/
%G ru
%F MT_2024_27_2_a6
A. V. Nadutkina; A. N. Tikhomirov; D. A. Timushev. Marchenko–Pastur law for the spectrum of a random weighted bipartite graph. Matematičeskie trudy, Tome 27 (2024) no. 2, pp. 131-143. http://geodesic.mathdoc.fr/item/MT_2024_27_2_a6/

[1] Kolaczyk E. D., Statistical Analysis of Network Data, Springer, New York, 2009 | MR

[2] Newman M., Networks: An Introduction, OUP, Oxford, 2010 | MR

[3] Kunegis J., De Luca E. W. and Albayrak S., “The Link Prediction Problem in Bipartite Networks”, Proceedings of the Computational Intelligence for Knowledge-based Systems Design, and 13th International Conference on Information Processing and Management of Uncertainty, 2010, 380-389

[4] Erdős P. and Rényi A., “On Random Graphs I”, Publ. Math. Debrecen, 6 (1959), 290-297 | MR

[5] Pavlopoulos G. A., Kontou P. I., Pavlopoulou A., Bouyioukos C., Markou E., Bagos P. G., “Bipartite graphs in systems biology and medicine: a survey of methods and applications”, GigaScience, 7:4 (2018) | DOI

[6] Tikhomirov A. N., “On the Wigner Law for Generalizided Random Graphs”, Sib. Adv. Math., 31 (2021), 301-308 | DOI | MR

[7] Götze F., Tikhomirov A. N., “The Rate of Convergence of Spectra of Sample Covariance Matrices”, Theory Probab. Appl., 54:1 (2010), 129-140 | DOI | MR

[8] Götze F., Tikhomirov A. N., “Optimal bounds for convergence of expected spectral distributions to the semi-circular law”, Probab. Theory Relat. Fields, 165:1 (2016), 163-233 | DOI | MR