On the identification of difference equations by observations of solutions with perturbations from a given linear manifold
Matematičeskie trudy, Tome 27 (2024) no. 2, pp. 111-130 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the Prony identification problem of coefficients of a linear difference equation from noisy solutions observations with unknown additive perturbations from an arbitrary given linear manifold. The property of “projectivity” of the variational objective function is proved. Criteria and the sufficient conditions of identifiability are obtained for two main types of equations.
@article{MT_2024_27_2_a5,
     author = {A. A. Lomov},
     title = {On the identification of difference equations by observations of solutions with perturbations from a given linear manifold},
     journal = {Matemati\v{c}eskie trudy},
     pages = {111--130},
     year = {2024},
     volume = {27},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2024_27_2_a5/}
}
TY  - JOUR
AU  - A. A. Lomov
TI  - On the identification of difference equations by observations of solutions with perturbations from a given linear manifold
JO  - Matematičeskie trudy
PY  - 2024
SP  - 111
EP  - 130
VL  - 27
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/MT_2024_27_2_a5/
LA  - ru
ID  - MT_2024_27_2_a5
ER  - 
%0 Journal Article
%A A. A. Lomov
%T On the identification of difference equations by observations of solutions with perturbations from a given linear manifold
%J Matematičeskie trudy
%D 2024
%P 111-130
%V 27
%N 2
%U http://geodesic.mathdoc.fr/item/MT_2024_27_2_a5/
%G ru
%F MT_2024_27_2_a5
A. A. Lomov. On the identification of difference equations by observations of solutions with perturbations from a given linear manifold. Matematičeskie trudy, Tome 27 (2024) no. 2, pp. 111-130. http://geodesic.mathdoc.fr/item/MT_2024_27_2_a5/

[1] de Prony, Baron Gaspard Riche, “Essai éxperimental et analytique: sur les lois de la dilatabilité de fluides élastique et sur celles de la force expansive de la vapeur de l'alkool, à différentes températures”, Journal de l'École Polytechnique, 1:22 (1795), 24–76

[2] Pereyra V., Scherer G., “Exponential data fitting”, Exponential Data Fitting and Its Applications, Bentham Science Publishers, 2010, 1–26

[3] Tsypkin Ya. Z., “Adaptively invariant discrete control systems”, Automation and remote control, 52:5 (1991), 673–696 | MR

[4] Andrievsky B. R., Furtat I. B., “Disturbance Observers: Methods and Applications”, Automation and Remote Control, 81:9 (2020), 1563–1610 | DOI | MR

[5] Lomov A. A., “Estimation of Trends and Identification of Time Series Dynamics in Short Observation Sections”, Journal of Computer and Systems Sciences International, 48:1 (2009), 1–13 | DOI | MR

[6] Lomov A. A., “Joint identifiability of coefficients of linear difference equations of object and additive disturbances”, Journal of Mathematical Sciences, 221:6 (2017), 857–871 | DOI | MR

[7] Lomov A. A., “On consistency of a generalized orthoregressive parameter estimator for a linear dynamical system”, Journal of Applied and Industrial Mathematics, 7:1 (2014), 1–7 | MR

[8] Markovsky I., Pintelon R., “Identification of linear time-invariant systems from multiple experiments”, IEEE Trans. Signal Process., 63:13 (2015), 3549–3554 | DOI | MR

[9] Householder A. S., On Prony's method of fitting exponential decay curves and multiple-hit survival curves, Oak Ridge National Lab. Report ORNL-455, Oak Ridge, Tennessee, 1950 | MR

[10] Marple S. L., Digital spectral analysis: with applications, Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1986 | MR

[11] Egorshin A. O., “Least squares method and the «fast» algorithms in variational problems of identification and filtration (VI method)”, Avtometriya, 1988, no. 1, 30–42 (in Russian)

[12] Osborne M. R. A class of nonlinear regression problems, Data Representation, eds. R. S. Anderssen and M. R. Osborne, University of Queensland Press, St. Lucia, 1970, 94–101

[13] Egorshin A. O., Budyanov V. P., “Smoothing of signals and estimation of dynamic parameters in automatic systems using a digital computer”, Avtometriya, 1973, no. 1, 78–82 (in Russian)

[14] Osborne M. R., Smyth G. K., “A modified Prony algorithm for fitting functions defined by difference equations”, SIAM J. Sci. Statist. Comput., 12 (1991), 362–382 | DOI | MR

[15] Lomov A. A., “On Convergence of Computational Algorithms for a Variational Problem of Identifying the Coefficients of Difference Equations”, Journal of Applied and Industrial Mathematics, 14:3 (2020), 541–554 | DOI | MR

[16] Gel'fond A. O., Calculus of finite differences, Hindustan Publ. Corp., 1971 | MR