@article{MT_2024_27_2_a5,
author = {A. A. Lomov},
title = {On the identification of difference equations by observations of solutions with perturbations from a given linear manifold},
journal = {Matemati\v{c}eskie trudy},
pages = {111--130},
year = {2024},
volume = {27},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2024_27_2_a5/}
}
TY - JOUR AU - A. A. Lomov TI - On the identification of difference equations by observations of solutions with perturbations from a given linear manifold JO - Matematičeskie trudy PY - 2024 SP - 111 EP - 130 VL - 27 IS - 2 UR - http://geodesic.mathdoc.fr/item/MT_2024_27_2_a5/ LA - ru ID - MT_2024_27_2_a5 ER -
A. A. Lomov. On the identification of difference equations by observations of solutions with perturbations from a given linear manifold. Matematičeskie trudy, Tome 27 (2024) no. 2, pp. 111-130. http://geodesic.mathdoc.fr/item/MT_2024_27_2_a5/
[1] de Prony, Baron Gaspard Riche, “Essai éxperimental et analytique: sur les lois de la dilatabilité de fluides élastique et sur celles de la force expansive de la vapeur de l'alkool, à différentes températures”, Journal de l'École Polytechnique, 1:22 (1795), 24–76
[2] Pereyra V., Scherer G., “Exponential data fitting”, Exponential Data Fitting and Its Applications, Bentham Science Publishers, 2010, 1–26
[3] Tsypkin Ya. Z., “Adaptively invariant discrete control systems”, Automation and remote control, 52:5 (1991), 673–696 | MR
[4] Andrievsky B. R., Furtat I. B., “Disturbance Observers: Methods and Applications”, Automation and Remote Control, 81:9 (2020), 1563–1610 | DOI | MR
[5] Lomov A. A., “Estimation of Trends and Identification of Time Series Dynamics in Short Observation Sections”, Journal of Computer and Systems Sciences International, 48:1 (2009), 1–13 | DOI | MR
[6] Lomov A. A., “Joint identifiability of coefficients of linear difference equations of object and additive disturbances”, Journal of Mathematical Sciences, 221:6 (2017), 857–871 | DOI | MR
[7] Lomov A. A., “On consistency of a generalized orthoregressive parameter estimator for a linear dynamical system”, Journal of Applied and Industrial Mathematics, 7:1 (2014), 1–7 | MR
[8] Markovsky I., Pintelon R., “Identification of linear time-invariant systems from multiple experiments”, IEEE Trans. Signal Process., 63:13 (2015), 3549–3554 | DOI | MR
[9] Householder A. S., On Prony's method of fitting exponential decay curves and multiple-hit survival curves, Oak Ridge National Lab. Report ORNL-455, Oak Ridge, Tennessee, 1950 | MR
[10] Marple S. L., Digital spectral analysis: with applications, Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1986 | MR
[11] Egorshin A. O., “Least squares method and the «fast» algorithms in variational problems of identification and filtration (VI method)”, Avtometriya, 1988, no. 1, 30–42 (in Russian)
[12] Osborne M. R. A class of nonlinear regression problems, Data Representation, eds. R. S. Anderssen and M. R. Osborne, University of Queensland Press, St. Lucia, 1970, 94–101
[13] Egorshin A. O., Budyanov V. P., “Smoothing of signals and estimation of dynamic parameters in automatic systems using a digital computer”, Avtometriya, 1973, no. 1, 78–82 (in Russian)
[14] Osborne M. R., Smyth G. K., “A modified Prony algorithm for fitting functions defined by difference equations”, SIAM J. Sci. Statist. Comput., 12 (1991), 362–382 | DOI | MR
[15] Lomov A. A., “On Convergence of Computational Algorithms for a Variational Problem of Identifying the Coefficients of Difference Equations”, Journal of Applied and Industrial Mathematics, 14:3 (2020), 541–554 | DOI | MR
[16] Gel'fond A. O., Calculus of finite differences, Hindustan Publ. Corp., 1971 | MR