Some generalizations of o-minimality
Matematičeskie trudy, Tome 27 (2024) no. 2, pp. 99-110 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Some generalizations of the concept of o-minimality — $\lambda$-o-minimality and weak $\lambda$-$p.o$-$lin$-minimality, are introduced and their properties are studied.
@article{MT_2024_27_2_a4,
     author = {K. Zh. Kudaibergenov},
     title = {Some generalizations of o-minimality},
     journal = {Matemati\v{c}eskie trudy},
     pages = {99--110},
     year = {2024},
     volume = {27},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2024_27_2_a4/}
}
TY  - JOUR
AU  - K. Zh. Kudaibergenov
TI  - Some generalizations of o-minimality
JO  - Matematičeskie trudy
PY  - 2024
SP  - 99
EP  - 110
VL  - 27
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/MT_2024_27_2_a4/
LA  - ru
ID  - MT_2024_27_2_a4
ER  - 
%0 Journal Article
%A K. Zh. Kudaibergenov
%T Some generalizations of o-minimality
%J Matematičeskie trudy
%D 2024
%P 99-110
%V 27
%N 2
%U http://geodesic.mathdoc.fr/item/MT_2024_27_2_a4/
%G ru
%F MT_2024_27_2_a4
K. Zh. Kudaibergenov. Some generalizations of o-minimality. Matematičeskie trudy, Tome 27 (2024) no. 2, pp. 99-110. http://geodesic.mathdoc.fr/item/MT_2024_27_2_a4/

[1] van den Dries L., “Remarks on Tarski's problem concerning $(R,+,\cdot,exp)$”, Logic Colloquium' 82 (Florence), Stud. Logic Found. Math., 112, North-Holland, Amsterdam, 1982, 97–121 | MR

[2] Pillay A. and Steinhorn C., “Definable sets in ordered structures. I”, Trans. Amer. Math. Soc., 295 (1986), 565–592 | DOI | MR

[3] Dickmann M. A., “Elimination of quantifiers for ordered valuation rings”, Proc. of the 3rd Easter Conf. on Model Theory (Gross Koris, 1985), Humboldt Univ., Berlin, 1985, 64–88 | MR

[4] Macpherson D., Marker D., and Steinhorn C., “Weakly o-minimal structures and real closed fields”, Trans. Amer. Math. Soc., 352:12 (2000), 5435–5483 | DOI | MR

[5] Belegradek O., Peterzil Y., and Wagner F., “Quasi-o-minimal structures”, J. Symbolic Logic, 65:3 (2000), 1115–1132 | DOI | MR

[6] Kudaibergenov K. Zh., “Weakly quasi-o-minimal models”, Math. Proc., 13:1 (2010), 156–168

[7] Toffalori C., “Lattice ordered o-minimal structures”, Notre Dame J. Formal Logic., 39:4 (1998), 447–464 | DOI | MR

[8] Newelski L. and Wencel R., “Definable sets in boolean-ordered o-minimal structures. I”, J. Symbolic Logic, 66:4 (2001), 1821–1836 | DOI | MR

[9] Macpherson D. and Steinhorn C., “On variants of o-minimality”, Ann. Pure Appl. Logic., 79:2 (1996), 165–209 | DOI | MR

[10] Kudaibergenov K. Zh., “Generalized o-minimality for partial orders”, Math. Proc., 15:1 (2012), 86–108

[11] Kudaibergenov K. Zh., “Convexity relations and generalizations of o-minimality”, Math. Proc., 21:1 (2018), 35–54

[12] Ershov Yu. L. and Palyutin E. A., Mathematical Logic, Nauka, M., 1987

[13] Keisler H. J. and Chang C. C., Model Theory, Mir, M., 1977

[14] Hodges W., Model theory, Encyclopedia of Mathematics and Its Applications, 42, Cambridge University Press, Cambridge, 1993 | MR