@article{MT_2024_27_2_a2,
author = {N. P. Volchkova and V. V. Volchkov},
title = {Characterization of holomorphic functions by zero spherical means},
journal = {Matemati\v{c}eskie trudy},
pages = {40--61},
year = {2024},
volume = {27},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2024_27_2_a2/}
}
N. P. Volchkova; V. V. Volchkov. Characterization of holomorphic functions by zero spherical means. Matematičeskie trudy, Tome 27 (2024) no. 2, pp. 40-61. http://geodesic.mathdoc.fr/item/MT_2024_27_2_a2/
[1] Fedorov V. S., “On a property of line integrals”, Mat. Sbornik N.S., 24(66) (1949), 15–26 | Zbl
[2] Reade M. O., “A theorem of Fédoroff”, Duke Math. J., 18 (1951), 105–109 | DOI | MR | Zbl
[3] Aizenberg L. A., “A note on Morera's theorem”, Holomorphic functions of many complex variables, Kirensky Institute of Physics, Siberian Branch of USSR Academy of Sciences, Krasnoyarsk, 1972
[4] Bondar A. V., “A generalization of the multidimensional Morera theorem”, Ukr. Math. J., 30:3 (1978), 265–269 | DOI | MR | Zbl
[5] Berenstein C. A., Struppa D. C., “Complex analysis and convolution equations”, Several complex variables. $\mathrm{V}$: Complex analysis in partial differential equations and mathematical physics, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 54, 1993, 1–108
[6] Volchkov V. V., Integral Geometry and Convolution Equations, Kluwer, Dordrecht, 2003 | MR | Zbl
[7] Myslivets S. G., “On the multidimensional boundary analogue of the Morera theorem”, J. Sib. Fed. Univ. Math. Phys., 15:1 (2022), 29–45 | DOI | MR | Zbl
[8] Volchkov V. V. and Volchkov Vit. V., “Zalcman's problem and related two-radii theorems”, Anal. Math. Phys., 13:5 (2023), 1–47 | DOI | MR
[9] Zalcman L., “Analyticity and the Pompeiu problem”, Arch. Rat. Mech. Anal., 47 (1972), 237–254 | DOI | MR | Zbl
[10] Smith J. D., “Harmonic analysis of scalar and vector fields in $\mathbb R^n$”, Proc. Cambridge Philos. Soc., 72 (1972), 403–416 | DOI | MR | Zbl
[11] Brown L., Schreiber B. M. and Taylor B. M., “Spectral synthesis and the Pompeiu problem”, Ann. Inst. Fourier, 23 (1973), 125–154 | DOI | MR | Zbl
[12] Berenstein C. A. and Gay R., “A local version of the two-circles theorem”, Israel J. Math., 55 (1986), 267–288 | DOI | MR | Zbl
[13] Zalcman L., A bibliographic survey of the Pompeiu problem, Approximation by Solutions of Partial Differential Equations, 365, Kluwer, Dordrecht, 1992 | MR
[14] Volchkov V. V. and Volchkov Vit. V., Offbeat Integral Geometry on Symmetric Spaces, Birkhäuser, Basel, 2013 | MR | Zbl
[15] Williams S. A., “Analyticity of the boundary for Lipschitz domains without the Pompeiu property”, Indiana Univ. Math. J., 30 (1981), 357–369 | DOI | MR | Zbl
[16] Volchkov V. V., “A definitive version of the local two-radii theorem”, Sb. Math., 186:6 (1995), 783–802 | DOI | MR | Zbl
[17] Erdélyi A., Magnus W., Oberhettinger F., and Tricomi F. G., Higher Transcendental Functions, v. II, McGraw-Hill, New York, 1953 | MR
[18] Rudin W., Function Theory in the Unit Ball of $\mathbb{C}^n$, Springer, New York, 1980 | MR
[19] Volchkov V. V. and Volchkov Vit. V., Harmonic Analysis of Mean Periodic Functions on Symmetric Spaces and the Heisenberg Group, Springer, London, 2009 | MR | Zbl
[20] Helgason S., Groups and Geometric Analysis, Academic Press, New York, 1984 | MR | Zbl
[21] Vilenkin N. Ja., Special Functions and the Theory of Group Representations, AMS, RI, 1968 | MR | Zbl
[22] Volchkov V. V., “Solution of the support problem for several function classes”, Sb. Math., 188:9 (1997), 1279–1294 | DOI | DOI | MR | Zbl
[23] Shabat B. V., Introduction to Complex Analysis: Functions of Several Variables, AMS, RI, 1992 | MR | Zbl