@article{MT_2024_27_1_a4,
author = {A. A. Sedipkov},
title = {On one piecewise constant control for nonlinear differential equations in {Banach} space},
journal = {Matemati\v{c}eskie trudy},
pages = {163--178},
year = {2024},
volume = {27},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2024_27_1_a4/}
}
A. A. Sedipkov. On one piecewise constant control for nonlinear differential equations in Banach space. Matematičeskie trudy, Tome 27 (2024) no. 1, pp. 163-178. http://geodesic.mathdoc.fr/item/MT_2024_27_1_a4/
[1] R. E. Kalman, P. L. Falb, and M. A. Arbib., Topics in Mathematical System Theory, McGraw-Hill, New York, 1969 | MR | Zbl
[2] Fury M., Nistri P., Pera M. P., Zezza P. L., “Linear controllability by piecewise constant control with assigned switching times”, J. Optimize Theory and Apl., 45:2 (1985), 219-229 | DOI | MR
[3] Zezza P., “On reachable set for linear systems with piecewise constant controls”, Bol. Unione mat. Ital., 5:1 (1986), 127-137 | MR | Zbl
[4] Gryn L., “Discrete feedback stabilization of semilinear control systems”, Control, Optim. Calc. Var., 1 (1996), 207-224 | DOI | MR
[5] A. N. Kvitko, “On a control problem”, DIEQ, 40:6 (2004), 789-796 | MR | Zbl
[6] Lapin S. V., “Piecewise-constant stabilization of systems linear in control”, Autom. Remote Control., 53:6 (1992), 816-822 | MR | Zbl
[7] Bourdin L., Trelat E., “Robustness under control sampling of reachability in fixed time for nonlinear control systems”, Math. Control Signals Syst., 33:3 (2021), 515-551 | DOI | MR | Zbl
[8] Zelenyak T. I., Slin'ko M. G., “The dynamics of catalytic systems I”, KICA, 18:5 (1977), 1235-1248 (in Russian)
[9] Zelenyak T. I., Slin'ko M. G., “The dynamics of catalytic systems II”, KICA, 18:6 (1977), 1548-1560 (in Russian)
[10] Musienko E. I., “The control over the solution of a parabolic problem in a neighbourhood of an unstable stationary solution”, Dinamika Sploshn. Sredy, 1981, no. 51, 68-83 (in Russian)
[11] Musienko E. I., “Control of solutions of some parabolic problems in the neighborhood of unstable stationary solutions”, DIEQ, 20:12 (1984), 2120-2130 (in Russian) | Zbl
[12] Ivirsin M. B., “Parametric control of solutions to an evolution problem in a neighborhood of an unstable stationary regime”, SIMJ, 48:4 (2007), 606-615 | MR | Zbl
[13] Ivirsin M. B., “Relay control of an evolution process in a Banach space in a neighborhood of an unstable stationary regime”, SIMJ, 51:1 (2010), 25-37 | MR | Zbl
[14] Kvitko A. N., “A method for solving boundary value problems for nonlinear control systems in the class of discrete controls”, DIEQ, 44:11 (2008), 1559-1570 | MR | Zbl
[15] Kvitko A. N., Yakusheva, D. B., “Solution of the boundary-value problem for nonlinear steady-state controlled system on the infinite time interval considering discrete control function”, Inform. Control Syst., 2011, no. 6, 25-29 (in Russian)
[16] Kvitko A. N., Litvinov, N. N., “Solution of a local boundary problem for a non-linear non-stationary system in the class of discrete controls”, Vestn. St. Petersburg Univ. Prikl. Mat. Inform. Prots. Upr., 18:1 (2022), 18-36 (in Russian)
[17] Sedipkov A. A., “Parametric control of solutions to a linear evolution problem in a neighborhood of an unstable equilibrium”, SIMJ, 60:4 (2019), 685-689 | MR | Zbl
[18] Zorich V. A., Mathematical Analysis, v. II, Springer, Berlin, 2016 | MR | Zbl
[19] Daletskii Yu. L., Krein, M. G., Stability of Solutions of Differential Equations in Banach Space, Amer. Math. Soc., Providence, 1974 | MR | Zbl