@article{MT_2024_27_1_a3,
author = {J. Sh. Safarov and D. K. Durdiev and A. A. Rakhmonov},
title = {Inverse problem for a hyperbolic integro-differential equation in a bounded domain},
journal = {Matemati\v{c}eskie trudy},
pages = {139--162},
year = {2024},
volume = {27},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2024_27_1_a3/}
}
TY - JOUR AU - J. Sh. Safarov AU - D. K. Durdiev AU - A. A. Rakhmonov TI - Inverse problem for a hyperbolic integro-differential equation in a bounded domain JO - Matematičeskie trudy PY - 2024 SP - 139 EP - 162 VL - 27 IS - 1 UR - http://geodesic.mathdoc.fr/item/MT_2024_27_1_a3/ LA - ru ID - MT_2024_27_1_a3 ER -
J. Sh. Safarov; D. K. Durdiev; A. A. Rakhmonov. Inverse problem for a hyperbolic integro-differential equation in a bounded domain. Matematičeskie trudy, Tome 27 (2024) no. 1, pp. 139-162. http://geodesic.mathdoc.fr/item/MT_2024_27_1_a3/
[1] Hasanov A.H., Romanov V.G., Introduction to Inverse Problems for Differential Equations, Springer Nature Switzerland, 2017 | MR | Zbl
[2] Romanov V.G., Inverse problems of mathematical physics, Nauka, M., 1984
[3] Romanov V.G., Stability in inverse problems, Nauka, M., 2005
[4] Kirsch A., An Introduction to the Mathematical Theory of Inverse Problems, Springer Nature Switzerland, 2021 | DOI | MR | Zbl
[5] Lesnic D., Inverse Problems with Applications in Science and Engineering, Chapman and Hall, Leeds, 2022 | DOI | MR
[6] Kabanikhin S.I., Inverse and ill-posed problems, Siberian Scientific Publishing House, Novosibirsk, 2009
[7] Lorenzi A., and Sinestrari E., “Stability results for a partial integrodifferential inverse problem”, Pitman Research Notes Math., 190 (1989), 271–294 | MR | Zbl
[8] Lorenzi A., and Paparoni E., “Direct and inverse problems in the theory of materials with memory”, Ren. Sem. Math. Univ., 87 (1992), 105 – 138 | MR | Zbl
[9] Lorenzi A., “An identification problem related to a nonlinear hyperbolic integro-differential equation”, Nonlinear NonlinearAnalysis: Theory, Methods Applications, 22:1 (1994), 21–44 | DOI | MR | Zbl
[10] Safarov Z. S., and Durdiev D. K., “Inverse Problem for an Integro-Differential Equation of Acoustics”, Differential Equations, 54:1 (1971), 134-142 | DOI | MR
[11] Safarov J. Sh., “Global solvability of the one-dimensional inverse problem for the integro-differential equation of acoustics”, J. Sib. Fed. Univ. Math Phys., 11:6 (2018), 753–763 | DOI | MR | Zbl
[12] Romanov V.G., “On the determination of the coefficients in the viscoelasticity equations”, Siberian Math. J., 55:3 (2014), 503–510 | DOI | MR | Zbl
[13] Durdiev D. K., Safarov J. Sh., “Inverse problem of determining the one-dimensional kernel of the viscoelasticity equation in a bounded domain”, Mat. Zametki, 97:6 (2015), 855–867 | DOI | Zbl
[14] Rahmonov A. A., Durdiev U. D., Bozorov Z. R., “Problem of determining the speed of sound and the memory of an anisotropic medium”, Teor. Mat. Fiz., 207:1 (2021), 112–132 | DOI | Zbl
[15] Guidetti D., “Reconstruction of a convolution kernel in a parabolic problem with a memory term in the boundary conditions”, Bruno Pini Mathematical Analysis Seminar., 4:1 (2013), 47–55 | DOI | MR
[16] Cavaterra C., Guidetti D., “Identification of a convolution kernel in a control problem for the heat equation with a boundary memory term”, Annali di Matematica, 193 (2014), 779–816 | DOI | MR | Zbl
[17] Janno J., Von Wolfersdorf L., “Inverse problems for identification of memory kernels in viscoelasticity”, Mathematical methods in the applied sciences, 20:4 (1997), 291–314 | 3.0.CO;2-W class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[18] Durdiev, D. K., Rahmonov, A. A., “The problem of determining the 2D-kernel in a system of integro-differential equations of a viscoelastic porous medium.”, Sib. Zh. Ind. Mat., 23:2 (2020), 63–80 | MR | Zbl
[19] Durdiev D. K., Totieva Zh. D., “Determination of non-stationary potential analytical with respect to spatial variables”, Zhurn. SFU. Ser. Mat. i Fiz., 15:5 (2022), 565–576 | MR | Zbl
[20] Safarov J. Sh., “Two-dimensional Inverse Problem for an Integro-differential Equation of Hyperbolic Type”, Journal of Siberian Federal University. Mathematics and Physics., 15:5 (2022), 651–662 | DOI | MR | Zbl
[21] Durdiev D. K., Rahmonov A. A., “A 2D kernel determination problem in a visco-elastic porous medium with a weakly horizontally inhomogeneity”, Sib. Zh. Ind. Mat., 25:1 (2019), 26–32 | Zbl
[22] Durdiev D. K., Safarov J. Sh., “The problem of determining the memory of a medium with weakly horizontal heterogeneity”, Vestn. Udm. Univ. Mat. Mekh. Komp. Nauki, 32:3 (2022), 383–402 | DOI | Zbl
[23] Durdiev, D. K., Totieva, Zh. D., “About global solvability of a multidimensional inverse problem for an equation with memory”, Sib. Mat. Zh., 62:2 (2021), 269–285 | Zbl
[24] Janno J., Von Wolfersdorf L., “Inverse problems for identification of memory kernels in heat flow”, J.Inv. Ill-Posed Problems, 4:1 (1996), 39–66 | DOI | MR | Zbl
[25] V.S. Vladimirov, Equations of mathematical physics, Nauka, M., 1988
[26] Russian Math. Surveys, 15:1 (1960), 85–142 | MR | Zbl
[27] Kolmogorov A.N., Fomin S.V., Elements of function theory and functional analysis, Nauka, M., 1976
[28] Tikhonov A.N., Samarsii A.A., Equations of mathematical physics, Nauka, M., 1977