Inverse problem for a hyperbolic integro-differential equation in a bounded domain
Matematičeskie trudy, Tome 27 (2024) no. 1, pp. 139-162 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we consider the inverse problem of determining the kernel of an integral term in an integro-differential equation. The problem of determining the memory kernel in the wave process is reduced to a nonlinear Volterra integral equation of the first kind of convolution type, then over determination condition it brings to the Volterra integral equation of the second kind. The method of contraction maps proves the unique solvability of the problem in the space of continuous functions with weight norms, and an estimate of the conditional stability of the solution is obtained.
@article{MT_2024_27_1_a3,
     author = {J. Sh. Safarov and D. K. Durdiev and A. A. Rakhmonov},
     title = {Inverse problem for a hyperbolic integro-differential equation in a bounded domain},
     journal = {Matemati\v{c}eskie trudy},
     pages = {139--162},
     year = {2024},
     volume = {27},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2024_27_1_a3/}
}
TY  - JOUR
AU  - J. Sh. Safarov
AU  - D. K. Durdiev
AU  - A. A. Rakhmonov
TI  - Inverse problem for a hyperbolic integro-differential equation in a bounded domain
JO  - Matematičeskie trudy
PY  - 2024
SP  - 139
EP  - 162
VL  - 27
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/MT_2024_27_1_a3/
LA  - ru
ID  - MT_2024_27_1_a3
ER  - 
%0 Journal Article
%A J. Sh. Safarov
%A D. K. Durdiev
%A A. A. Rakhmonov
%T Inverse problem for a hyperbolic integro-differential equation in a bounded domain
%J Matematičeskie trudy
%D 2024
%P 139-162
%V 27
%N 1
%U http://geodesic.mathdoc.fr/item/MT_2024_27_1_a3/
%G ru
%F MT_2024_27_1_a3
J. Sh. Safarov; D. K. Durdiev; A. A. Rakhmonov. Inverse problem for a hyperbolic integro-differential equation in a bounded domain. Matematičeskie trudy, Tome 27 (2024) no. 1, pp. 139-162. http://geodesic.mathdoc.fr/item/MT_2024_27_1_a3/

[1] Hasanov A.H., Romanov V.G., Introduction to Inverse Problems for Differential Equations, Springer Nature Switzerland, 2017 | MR | Zbl

[2] Romanov V.G., Inverse problems of mathematical physics, Nauka, M., 1984

[3] Romanov V.G., Stability in inverse problems, Nauka, M., 2005

[4] Kirsch A., An Introduction to the Mathematical Theory of Inverse Problems, Springer Nature Switzerland, 2021 | DOI | MR | Zbl

[5] Lesnic D., Inverse Problems with Applications in Science and Engineering, Chapman and Hall, Leeds, 2022 | DOI | MR

[6] Kabanikhin S.I., Inverse and ill-posed problems, Siberian Scientific Publishing House, Novosibirsk, 2009

[7] Lorenzi A., and Sinestrari E., “Stability results for a partial integrodifferential inverse problem”, Pitman Research Notes Math., 190 (1989), 271–294 | MR | Zbl

[8] Lorenzi A., and Paparoni E., “Direct and inverse problems in the theory of materials with memory”, Ren. Sem. Math. Univ., 87 (1992), 105 – 138 | MR | Zbl

[9] Lorenzi A., “An identification problem related to a nonlinear hyperbolic integro-differential equation”, Nonlinear NonlinearAnalysis: Theory, Methods Applications, 22:1 (1994), 21–44 | DOI | MR | Zbl

[10] Safarov Z. S., and Durdiev D. K., “Inverse Problem for an Integro-Differential Equation of Acoustics”, Differential Equations, 54:1 (1971), 134-142 | DOI | MR

[11] Safarov J. Sh., “Global solvability of the one-dimensional inverse problem for the integro-differential equation of acoustics”, J. Sib. Fed. Univ. Math Phys., 11:6 (2018), 753–763 | DOI | MR | Zbl

[12] Romanov V.G., “On the determination of the coefficients in the viscoelasticity equations”, Siberian Math. J., 55:3 (2014), 503–510 | DOI | MR | Zbl

[13] Durdiev D. K., Safarov J. Sh., “Inverse problem of determining the one-dimensional kernel of the viscoelasticity equation in a bounded domain”, Mat. Zametki, 97:6 (2015), 855–867 | DOI | Zbl

[14] Rahmonov A. A., Durdiev U. D., Bozorov Z. R., “Problem of determining the speed of sound and the memory of an anisotropic medium”, Teor. Mat. Fiz., 207:1 (2021), 112–132 | DOI | Zbl

[15] Guidetti D., “Reconstruction of a convolution kernel in a parabolic problem with a memory term in the boundary conditions”, Bruno Pini Mathematical Analysis Seminar., 4:1 (2013), 47–55 | DOI | MR

[16] Cavaterra C., Guidetti D., “Identification of a convolution kernel in a control problem for the heat equation with a boundary memory term”, Annali di Matematica, 193 (2014), 779–816 | DOI | MR | Zbl

[17] Janno J., Von Wolfersdorf L., “Inverse problems for identification of memory kernels in viscoelasticity”, Mathematical methods in the applied sciences, 20:4 (1997), 291–314 | 3.0.CO;2-W class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[18] Durdiev, D. K., Rahmonov, A. A., “The problem of determining the 2D-kernel in a system of integro-differential equations of a viscoelastic porous medium.”, Sib. Zh. Ind. Mat., 23:2 (2020), 63–80 | MR | Zbl

[19] Durdiev D. K., Totieva Zh. D., “Determination of non-stationary potential analytical with respect to spatial variables”, Zhurn. SFU. Ser. Mat. i Fiz., 15:5 (2022), 565–576 | MR | Zbl

[20] Safarov J. Sh., “Two-dimensional Inverse Problem for an Integro-differential Equation of Hyperbolic Type”, Journal of Siberian Federal University. Mathematics and Physics., 15:5 (2022), 651–662 | DOI | MR | Zbl

[21] Durdiev D. K., Rahmonov A. A., “A 2D kernel determination problem in a visco-elastic porous medium with a weakly horizontally inhomogeneity”, Sib. Zh. Ind. Mat., 25:1 (2019), 26–32 | Zbl

[22] Durdiev D. K., Safarov J. Sh., “The problem of determining the memory of a medium with weakly horizontal heterogeneity”, Vestn. Udm. Univ. Mat. Mekh. Komp. Nauki, 32:3 (2022), 383–402 | DOI | Zbl

[23] Durdiev, D. K., Totieva, Zh. D., “About global solvability of a multidimensional inverse problem for an equation with memory”, Sib. Mat. Zh., 62:2 (2021), 269–285 | Zbl

[24] Janno J., Von Wolfersdorf L., “Inverse problems for identification of memory kernels in heat flow”, J.Inv. Ill-Posed Problems, 4:1 (1996), 39–66 | DOI | MR | Zbl

[25] V.S. Vladimirov, Equations of mathematical physics, Nauka, M., 1988

[26] Russian Math. Surveys, 15:1 (1960), 85–142 | MR | Zbl

[27] Kolmogorov A.N., Fomin S.V., Elements of function theory and functional analysis, Nauka, M., 1976

[28] Tikhonov A.N., Samarsii A.A., Equations of mathematical physics, Nauka, M., 1977