On alternating semigroups of endomorphisms of a groupoid
Matematičeskie trudy, Tome 27 (2024) no. 1, pp. 73-95 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The bipolar types of composition of a pair of endomorphisms of a groupoid are studied in this work. The notion of an alternating pair of endomorphisms of a groupoid is introduced. For such pairs, a formula is established for calculating the bipolar type of a composition using the bipolar types of endomorphisms included in the composition. Alternating and special alternating semigroups of endomorphisms of a groupoid are introduced. Any two endomorphisms from an alternating endomorphism semigroup form an alternating pair. It is shown that the basic set of endomorphisms of the first type is a special alternating semigroup with identity (that is, a monoid). We study the connection between special alternating endomorphism semigroups of two isomorphic groupoids $G$ and $G'$. It is established that every special alternating semigroup of endomorphisms of the groupoid $G$ is isomorphic to some special alternating semigroup of the groupoid $G'$.
@article{MT_2024_27_1_a1,
     author = {A. V. Litavrin},
     title = {On alternating semigroups of endomorphisms of a groupoid},
     journal = {Matemati\v{c}eskie trudy},
     pages = {73--95},
     year = {2024},
     volume = {27},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2024_27_1_a1/}
}
TY  - JOUR
AU  - A. V. Litavrin
TI  - On alternating semigroups of endomorphisms of a groupoid
JO  - Matematičeskie trudy
PY  - 2024
SP  - 73
EP  - 95
VL  - 27
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/MT_2024_27_1_a1/
LA  - ru
ID  - MT_2024_27_1_a1
ER  - 
%0 Journal Article
%A A. V. Litavrin
%T On alternating semigroups of endomorphisms of a groupoid
%J Matematičeskie trudy
%D 2024
%P 73-95
%V 27
%N 1
%U http://geodesic.mathdoc.fr/item/MT_2024_27_1_a1/
%G ru
%F MT_2024_27_1_a1
A. V. Litavrin. On alternating semigroups of endomorphisms of a groupoid. Matematičeskie trudy, Tome 27 (2024) no. 1, pp. 73-95. http://geodesic.mathdoc.fr/item/MT_2024_27_1_a1/

[1] Litavrin A. V., “On an element-by-element description of the monoid of all endomorphisms of an arbitrary groupoid and one classification of endomorphisms of a groupoid”, Tr. Inst. Mat. Mekh. (Ekaterinburg), 29, no. 1, 2023, 143–159 | Zbl

[2] Levchuk V. M., “Automorphisms of unipotent subgroups of Chevalley groups”, Algebra i Logika, 29:3 (1990), 315–338 | Zbl

[3] Levchuk V. M., “Automorphisms of unipotent subgroups of lie type groups of small ranks”, Algebra i Logika, 29:2 (1990), 141–161 | Zbl

[4] Bunina E. I., Semenov P. P., “Automorphisms of the semigroup of invertible matrices with nonnegative elements over commutative partially ordered rings”, Fundam. Prikl. Mat., 14:2 (2008), 69–100

[5] Bunina E. I., Sosov K., “Endomorphisms of semigroups of nonnegative invertible matrices of order two over commutative ordered rings”, Fundam. Prikl. Mat., 23:4 (2021), 39–53

[6] Nemiro V. V., “Endomorphisms of semigroups of invertible nonnegative matrices over ordered associative rings”, Vestn. Mosk. Univ. Ser. 1. Mathematics, Mechanics, 2020, no. 5, 3–8

[7] Semenov P. P., “Endomorphisms of semigroups of invertible nonnegative matrices over ordered rings”, Fundam. Prikl. Mat., 17:5 (2012), 165–178

[8] Krylov P. A., Mikhalev A. V., and Tuganbaev A. A., “Endomorphism Rings of Abelian Groups”, Math. Sci., 110:3 (2002), 2683–2745 | DOI | MR | Zbl

[9] Zhuchok Yu. V., “Endomorphism semigroups of some free products”, Fundam. Prikl. Mat., 17:3 (2012), 51–60

[10] Tabarov A. Kh., “Homomorphisms and endomorphisms of linear and alinear quasigroups”, Diskretn. Mat., 19:2 (2007), 67–73 | DOI | Zbl

[11] Timofeenko G. V., Glukhov M. M., “Groups of automorphisms of finitely presented quasigroups”, Mat. Zametki, 37:5 (1985), 617–626 | Zbl

[12] Khramtsov D. G., “Endomorphisms of automorphism group of free group”, Algebra Logika, 44:2 (2005), 211–237 | Zbl

[13] Il'inykh A. P., “Classification of finite groupoids with 2-transitive automorphism group”, Mat. Sb., 185:6 (1994), 51–78 | Zbl

[14] Il'inykh A. P., “Groupoids of order $q(q \pm 1)/2$, $q=2r$, with automorphism group isomorphic to $SL(2,q)$”, Sib. Mat. Zh., 36:6 (1995), 1336–1341 | Zbl

[15] Hobby D., Silberger D., and Silberger S., “Automorphism groups of finite groupoids”, Algebra Univers., 64 (2002), 117–136 | DOI | MR

[16] Litavrin A. V., “Endomorphisms of finite commutative groupoids related with multilayer feedforward neural networks”, Tr. Inst. Mat. Mekh. (Ekaterinburg), 27, no. 1, 2021, 130–145

[17] Litavrin A. V., “On endomorphisms of the additive monoid of subnets of a two-layer neural network”, The Bulletin of Irkutsk State University. Series Mathematics, 39 (2022), 111–126 | DOI | MR | Zbl

[18] Litavrin A. V., “On Anti-endomorphisms of Groupoids”, The Bulletin of Irkutsk State University. Series Mathematics, 44 (2023), 82–97 (to appear) | DOI | MR | Zbl