@article{MT_2024_27_1_a1,
author = {A. V. Litavrin},
title = {On alternating semigroups of endomorphisms of a groupoid},
journal = {Matemati\v{c}eskie trudy},
pages = {73--95},
year = {2024},
volume = {27},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2024_27_1_a1/}
}
A. V. Litavrin. On alternating semigroups of endomorphisms of a groupoid. Matematičeskie trudy, Tome 27 (2024) no. 1, pp. 73-95. http://geodesic.mathdoc.fr/item/MT_2024_27_1_a1/
[1] Litavrin A. V., “On an element-by-element description of the monoid of all endomorphisms of an arbitrary groupoid and one classification of endomorphisms of a groupoid”, Tr. Inst. Mat. Mekh. (Ekaterinburg), 29, no. 1, 2023, 143–159 | Zbl
[2] Levchuk V. M., “Automorphisms of unipotent subgroups of Chevalley groups”, Algebra i Logika, 29:3 (1990), 315–338 | Zbl
[3] Levchuk V. M., “Automorphisms of unipotent subgroups of lie type groups of small ranks”, Algebra i Logika, 29:2 (1990), 141–161 | Zbl
[4] Bunina E. I., Semenov P. P., “Automorphisms of the semigroup of invertible matrices with nonnegative elements over commutative partially ordered rings”, Fundam. Prikl. Mat., 14:2 (2008), 69–100
[5] Bunina E. I., Sosov K., “Endomorphisms of semigroups of nonnegative invertible matrices of order two over commutative ordered rings”, Fundam. Prikl. Mat., 23:4 (2021), 39–53
[6] Nemiro V. V., “Endomorphisms of semigroups of invertible nonnegative matrices over ordered associative rings”, Vestn. Mosk. Univ. Ser. 1. Mathematics, Mechanics, 2020, no. 5, 3–8
[7] Semenov P. P., “Endomorphisms of semigroups of invertible nonnegative matrices over ordered rings”, Fundam. Prikl. Mat., 17:5 (2012), 165–178
[8] Krylov P. A., Mikhalev A. V., and Tuganbaev A. A., “Endomorphism Rings of Abelian Groups”, Math. Sci., 110:3 (2002), 2683–2745 | DOI | MR | Zbl
[9] Zhuchok Yu. V., “Endomorphism semigroups of some free products”, Fundam. Prikl. Mat., 17:3 (2012), 51–60
[10] Tabarov A. Kh., “Homomorphisms and endomorphisms of linear and alinear quasigroups”, Diskretn. Mat., 19:2 (2007), 67–73 | DOI | Zbl
[11] Timofeenko G. V., Glukhov M. M., “Groups of automorphisms of finitely presented quasigroups”, Mat. Zametki, 37:5 (1985), 617–626 | Zbl
[12] Khramtsov D. G., “Endomorphisms of automorphism group of free group”, Algebra Logika, 44:2 (2005), 211–237 | Zbl
[13] Il'inykh A. P., “Classification of finite groupoids with 2-transitive automorphism group”, Mat. Sb., 185:6 (1994), 51–78 | Zbl
[14] Il'inykh A. P., “Groupoids of order $q(q \pm 1)/2$, $q=2r$, with automorphism group isomorphic to $SL(2,q)$”, Sib. Mat. Zh., 36:6 (1995), 1336–1341 | Zbl
[15] Hobby D., Silberger D., and Silberger S., “Automorphism groups of finite groupoids”, Algebra Univers., 64 (2002), 117–136 | DOI | MR
[16] Litavrin A. V., “Endomorphisms of finite commutative groupoids related with multilayer feedforward neural networks”, Tr. Inst. Mat. Mekh. (Ekaterinburg), 27, no. 1, 2021, 130–145
[17] Litavrin A. V., “On endomorphisms of the additive monoid of subnets of a two-layer neural network”, The Bulletin of Irkutsk State University. Series Mathematics, 39 (2022), 111–126 | DOI | MR | Zbl
[18] Litavrin A. V., “On Anti-endomorphisms of Groupoids”, The Bulletin of Irkutsk State University. Series Mathematics, 44 (2023), 82–97 (to appear) | DOI | MR | Zbl