Set theoretical solutions of equations of $n$ – simplexes
Matematičeskie trudy, Tome 27 (2024) no. 1, pp. 5-72 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The $n$-simplex equation ($n$-SE) was introduced by A. B. Zamolodchikov as a generalization of the Yang–Baxter equation, which is, in these terms, a 2-simplex equation. In this article we propose some general approaches to constructing solutions to equations of $n$-simplices, describe some types of solutions, and introduce an operation that, under certain conditions, allows us to construct a solution $(n + m + k)$-SE from solutions $( n + k)$-SE and $(m + k)$-SE. We consider tropicalization of rational decisions and discuss ways to generalize it. We prove that if $G$ is an extension of $H$ by $K$, then we can find a solution of $n$-SE on $G$ from the solutions of this equation on $H$ and $K$. Also, we find solutions to the parametric Yang–Baxter equation on $H$ with parameters from $K$. To study the 3-simplex equation, we introduced algebraic systems with ternary operations and gave examples of these systems that give 3-SE solutions. We find all elementary verbal solutions of 3-SE on a free group.
@article{MT_2024_27_1_a0,
     author = {V. G. Bardakov and B. B. Chuzinov and I. A. Emelyanenkov and M. E. Ivanov and T. A. Kozlovskaya and V. \`E. Leshkov},
     title = {Set theoretical solutions of equations of $n$ {\textendash} simplexes},
     journal = {Matemati\v{c}eskie trudy},
     pages = {5--72},
     year = {2024},
     volume = {27},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2024_27_1_a0/}
}
TY  - JOUR
AU  - V. G. Bardakov
AU  - B. B. Chuzinov
AU  - I. A. Emelyanenkov
AU  - M. E. Ivanov
AU  - T. A. Kozlovskaya
AU  - V. È. Leshkov
TI  - Set theoretical solutions of equations of $n$ – simplexes
JO  - Matematičeskie trudy
PY  - 2024
SP  - 5
EP  - 72
VL  - 27
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/MT_2024_27_1_a0/
LA  - ru
ID  - MT_2024_27_1_a0
ER  - 
%0 Journal Article
%A V. G. Bardakov
%A B. B. Chuzinov
%A I. A. Emelyanenkov
%A M. E. Ivanov
%A T. A. Kozlovskaya
%A V. È. Leshkov
%T Set theoretical solutions of equations of $n$ – simplexes
%J Matematičeskie trudy
%D 2024
%P 5-72
%V 27
%N 1
%U http://geodesic.mathdoc.fr/item/MT_2024_27_1_a0/
%G ru
%F MT_2024_27_1_a0
V. G. Bardakov; B. B. Chuzinov; I. A. Emelyanenkov; M. E. Ivanov; T. A. Kozlovskaya; V. È. Leshkov. Set theoretical solutions of equations of $n$ – simplexes. Matematičeskie trudy, Tome 27 (2024) no. 1, pp. 5-72. http://geodesic.mathdoc.fr/item/MT_2024_27_1_a0/

[1] Bukhshtaber V. M., “Yang–Baxter mappings”, Uspekhi Mat. Nauk, 53:6 (1998), 241–242 | DOI

[2] Yang C. N., “Some exact results for the many-body problem in one dimension with repulsive delta-function interaction”, Phys. Rev. Lett, 19 (1967), 1312–1315 | DOI | MR | Zbl

[3] Baxter R. J., “Partition function of the eight-vertex lattice model”, Ann. Physics, 70 (1972), 193–228 | DOI | MR | Zbl

[4] Zamolodchikov A. B., “Tetrahedra equations and integrable systems in three dimensional space”, Zh. Eksp. Teor. Fiz, 52:2 (1980), 325–326

[5] Zamolodchikov A. B., “Tetrahedron equations and the relativistic S-matrix of straight-strings in 2+1 dimensions”, Commun. Math. Phys, 79 (1981), 489–505 | DOI | MR

[6] Sklyanin E. K., Takhtadzhyan L. A. and Faddeev L. D., “The quantum inverse problem method”, Theor. and Math. Phys, 40:2 (1979), 194–220

[7] Takhtadzhyan L. A. and Faddeev L. D., “The quantum method for the inverse problem and the XYZ Heisenberg model”, Uspekhi Mat. Nauk, 34:5 (1979), 13–63 | Zbl

[8] Krichever I. M., “Baxter's equations and algebraic geometry”, Funct. Anal. Appl., 15:2 (1981), 92–103 | Zbl

[9] Hietarinta J., “All solutions to the constant quantum Yang–Baxter equation in two dimensions”, Phys. Lett. A, 165:3 (1992), 245–251 | DOI | MR

[10] Drinfeld V. G., “On some unsolved problems in quantum group theory”, Quantum groups, Lecture Notes in Math., 1510, 1992, 1–8 | Zbl

[11] Etingof P., Schedler T. and Soloviev A., “Set-theoretical solutions to the quantum Yang-Baxter equation”, Duke Math. J, 100:2 (1999), 169–209 | MR | Zbl

[12] Joyce D. and Morley M. D., “A classifying invariant of knots, the knot quandle”, J. Pure Appl. Algebra, 23:1 (1982), 37–65 | DOI | MR | Zbl

[13] Matveev S., “Distributive groupoids in knot theory”, Mat. Sb. (N.S.), 119 (161):1(9), 78–88

[14] Dynnikov I. A., “On a Yang–Baxter map and the Dehornoy ordering”, Russian Math. Surveys, 57:3 (2002), 592–594 | DOI | Zbl

[15] Lu J., Yan M. and Zhu Y., “On the set-theoretical Yang-Baxter equation”, Duke Math. J, 104 (2000), 1–18 | MR

[16] Preobrazhenskaya M. M. and Talalaev D. V., “Group extensions, fiber bundles, and a parametric Yang–Baxter equation”, Theoret. and Math. Phys, 207:2 (2021), 670–677 | Zbl

[17] Bukhshtaber V., Igonin S, Konstantinou-Rizos S. and Preobrazhenskaia M., “Yang–Baxter maps, Darboux transformations, and linear approximations of refactorisation problems”, J. Phys. A, 53:50 (2020), 504002, 22 pp. | DOI | MR | Zbl

[18] Rump W., “Modules over braces”, Algebra Discrete Math, 2006, no. 2, 127–137

[19] Rump W., “Braces, radical rings, and the quantum Yang-Baxter equation”, J. Algebra, 307:1 (2007), 153–170 | DOI | MR | Zbl

[20] Kurosh A. G., Lectures of the 1969-1970 Academic Year, Nauka, M., 1974

[21] Cedó F., Jespers E. and Okniński J., “Braces and the Yang–Baxter equation”, Comm. Math. Phys., 327:1 (2014), 101–116 | DOI | MR | Zbl

[22] Guarnieri L. and Vendramin L., “Skew braces and the Yang–Baxter equation”, Math. Comp., 86 (2017), 2519–2534 | DOI | MR | Zbl

[23] Korepanov I. G., Sharygin G. I.and Talalaev D. V., “Integrable 3D statistical models on six-valent graphs”, Proc. Steklov Inst. Math, 302:2 (2018), 198–216 | DOI | Zbl

[24] Korepanov I. G., Sharygin G. I.and Talalaev D. V., “Cohomologies of n-simplex relations”, Math. Proc. Cambridge Philos. Soc, 161:2 (2016), 203–222 | DOI | MR | Zbl

[25] Hietarinta J., “Permutation-type solutions to the Yang–Baxter and other n-simplex equations”, J. Phys. A: Math. Gen, 30 (1997), 4757–4771 | DOI | MR | Zbl

[26] Kassotakis P., Nieszporski M., Papageorgiouand V. and Tongas A., Tetrahedron maps and symmetries of three dimensional integrable discrete equations, arXiv: 1908.03019

[27] Bazhanov V. V. and Stroganov Yu. G., “Commutativity conditions for transfer matrices on a multidimensional lattice”, Theor. Mat. Fiz, 1983, no. 52, 685–691 | Zbl

[28] Bytsko A. and Volkov A., “Tetrahedron equation and cyclic quantum dilogarithm identities”, International Mathematics Research Notices, 20 (2015), 1075–1100 | DOI

[29] Carter J. and Saito M., “On Formulation and Solutions of Simplex Equations”, Int. J. Mod. Phys. A, 11 (1996), 4453–4463 | DOI | MR | Zbl

[30] Dimakis A. and Korepanov, I. G., “Grassmannian-parameterized solutions to direct-sum polygon and simplex equations”, J. Math. Phys, 62 (2021) | DOI

[31] Kashaev R. M., “On discrete 3-dimensional equations associated with the local Yang–Baxter relation”, Lett. Math. Phys, 35 (1996), 389–397 | DOI | MR

[32] Sergeev S. M., “Solutions of the Functional Tetrahedron Equation Connected with the Local Yang-Baxter Equation for the Ferro-Electric Condition”, Lett. Math. Phys, 45 (1998), 113–119 | DOI | MR | Zbl

[33] Soloviev A., “Non-unitary set-theoretical solutions to the quantum Yang–Baxter equation”, Math. Res. Lett., 2000, no. 7, 577–596 | DOI | MR

[34] Bachiller D., “Solutions of the Yang–Baxter equation associated to skew left braces, with applications to racks”, J. Knot Theory Ramif, 27:8 (2018), 1850055 | DOI | MR

[35] Kauffman L., “Virtual knot theory”, Eur. J. Comb, 20:7 (1999), 663–690 | DOI | MR | Zbl

[36] Belavin A. A. and Drinfeld V. G., “Solutions of the classical Yang-Baxter equation for simple Lie algebras”, Funktsional. Anal. i Prilozhen, 16:3 (1982), 1–29

[37] Kassotakis P. and Kouloukas T., On non-abelian quadrirational Yang-Baxter maps, arXiv: 2109.11975

[38] Kulish P. P. and Sklyanin E. K., “Solutions of the Yang-Baxter equation”, J. Soviet Math, 19:5 (1982), 1596–1620 | Zbl

[39] Gratzer G. A., Universal Algebra, 2nd ed., Springer Science and Business Media, 2008

[40] Bardakov V. G. and Neshchadim M. V., “On a representation of virtual braids by automorphisms”, Algebra Logic, 2017, no. 5, 355–361

[41] Bardakov V., Mikhalchishina Yu. and Neshchadim M., “Representations of virtual braids by automorphisms and virtual knot groups”, J. Knot Theory Ramifications, 26:1 (2017), 1750003 | DOI | MR

[42] MacLane S., Categories for the Working Mathematician, Graduate texts in mathematics, 1971

[43] Bardakov V. G. and Nasybullov T. R., “Multi-switches, representations of virtual braids and invariants of virtual links”, Algebra Logika, 59:4 (2020), 500–506 | Zbl

[44] Bardakov V. G. and Nasybullov T. R., “Multi-switches and virtual knot invariants”, Topology Appl, 293 (2021), 107552, 22 pp. | DOI | MR | Zbl