An approach to constructing explicit estimators in nonlinear regression
Matematičeskie trudy, Tome 26 (2023) no. 2, pp. 177-191.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of constructing explicit consistent estimators of finite-dimensional parameters of nonlinear regression models using various nonparametric kernel estimators.
@article{MT_2023_26_2_a8,
     author = {Yu. Yu. Linke and I. S. Borisov},
     title = {An approach to constructing explicit estimators in nonlinear regression},
     journal = {Matemati\v{c}eskie trudy},
     pages = {177--191},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2023_26_2_a8/}
}
TY  - JOUR
AU  - Yu. Yu. Linke
AU  - I. S. Borisov
TI  - An approach to constructing explicit estimators in nonlinear regression
JO  - Matematičeskie trudy
PY  - 2023
SP  - 177
EP  - 191
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2023_26_2_a8/
LA  - ru
ID  - MT_2023_26_2_a8
ER  - 
%0 Journal Article
%A Yu. Yu. Linke
%A I. S. Borisov
%T An approach to constructing explicit estimators in nonlinear regression
%J Matematičeskie trudy
%D 2023
%P 177-191
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2023_26_2_a8/
%G ru
%F MT_2023_26_2_a8
Yu. Yu. Linke; I. S. Borisov. An approach to constructing explicit estimators in nonlinear regression. Matematičeskie trudy, Tome 26 (2023) no. 2, pp. 177-191. http://geodesic.mathdoc.fr/item/MT_2023_26_2_a8/

[1] D. M. Bates, D. G. Watts, Nonlinear regression analysis and its applications, Wiley, New York, 1988 | MR | Zbl

[2] I. S. Borisov, Yu. Yu. Linke, P. S. Ruzankin, “Universal weighted kernel-type estimators for some class of regression models”, Metrika, 84:2 (2021), 141–166 | DOI | MR | Zbl

[3] S. Chatterjee, A. S. Hadi, Regression analysis by example, Wiley, Hoboken, 2006 | Zbl

[4] I. E.. Chung, K. H. Kim, “Asymptotic properties of the one-step M-estimators in nonlinear regression model”, Commun. Korean Math. Soc., 7:2 (1992), 293–306 | MR

[5] H. Dette, V. Melas, A. Pepelyshev, “Standardized E-optimal designs for the Michaelis-Menten model”, Statist. Sinica, 13 (2003), 1147–1163 | MR | Zbl

[6] H. Dette, V. Melas, W. K. Wong, “Optimal design for goodness-of-fit of the Michaelis-Menten enzyme kinetic function”, J. Amer. Statist. Assoc., 100:472 (2005), 1370–1381 | DOI | MR | Zbl

[7] N. R. Draper, H. Smith, Applied regression analysis, Wiley, New York, 1998 | MR | Zbl

[8] R. J. Freund, W. J. Wilson, P. Sa, Regression analysis: statistical modeling of a response variable, Academic Press, Cambridge, 2006

[9] G. Ghilagaber, H. Midi, H. Riazoshams, Robust nonlinear regression: with applications using R, Wiley, New York, 2019 | MR | Zbl

[10] Yu. D. Grigoriev, V. B. Melas, P. V. Shpilev, “Excess of locally D-optimal designs for Cobb-Douglas model”, Statist. Papers, 259 (2018), 1425–1439 | DOI | MR

[11] C. C. Heyde, Quasi-likelihood and its application: a general approach to optimal parameter estimation, Springer, 1997 | MR | Zbl

[12] Yu. Yu. Linke, “Towards insensitivity of Nadaraya-Watson estimators to design correlation”, Theory Probab. Appl., 68:2 (2023), 198–210 | DOI | MR

[13] Yu. Yu. Linke, “Asymptotic properties of one-step weighted M-estimators with application to some regression problems”, Theory Probab. Appl., 62:3 (2018), 373–398 | DOI | MR | Zbl

[14] Yu. Yu. Linke, “Asymptotic properties of one-step M-estimators”, Communications in Statistics Theory and Methods, 48:16 (2019), 4096–4118 | DOI | MR | Zbl

[15] Yu. Yu. Linke, “Asymptotic normality of one-step M-estimators based on non-identically distributed observations”, Statist. Probab. Lett., 129 (2017), 216–221 | DOI | MR | Zbl

[16] Yu. Yu. Linke, I. S. Borisov, “Constructing explicit estimators in nonlinear regression models”, Theory Probab. Appl., 63:1 (2018), 22–44 | DOI | MR | Zbl

[17] Yu. Yu. Linke, I. S. Borisov, P. S. Ruzankin, “Universal kernel-type estimation of random fields”, Statistics, 57:4 (2023), 785–810 | DOI | MR

[18] Yu. Yu. Linke, I. S. Borisov, “Insensitivity of Nadaraya-Watson estimators to design correlation”, Communications in Statistics Theory and Methods, 51:19 (2022), 6909–6918 | DOI | MR

[19] Yu. Yu. Linke, I. S. Borisov, “Constructing initial estimators in one-step estimation procedures of nonlinear regression”, Statist. Probab. Lett., 120 (2017), 87–94 | DOI | MR | Zbl

[20] Yu. Yu. Linke, I. S. Borisov, “Toward the notion of intrinsically linear models in nonlinear regression”, Siberian Adv. Math., 29:3 (2019), 210–216 | DOI | MR | Zbl

[21] Yu. Yu. Linke, A. I. Sakhanenko, “Asymptotically normal estimation of a multidimensional parameter in the linear-fractional regression problem”, Sibirsk Mat. Zh., 12:2 (2001), 372–388 | MR

[22] Yu. Yu. Linke, A. I. Sakhanenko, “Asymptotically normal explicit estimation of parameters in the Michaelis-Menten equation”, Sibirsk. Mat. Zh., 42:3 (2001), 610–633 | DOI | MR | Zbl

[23] B. Mu, E.-W. Bai, W. X. Zheng, Q. Zhu, “A globally consistent nonlinear least squares estimator for identification of nonlinear rational systems”, Automatica J. IFAC, 77 (2017), 322–335 | DOI | MR | Zbl

[24] Ch. H. Muller, “Asymptotic behaviour of one-step-M-estimators in contaminated nonlinear models”, Asymptotic Statistics, Physica, Verlag, Heidelberg, 1994, 395–404 | DOI | MR

[25] M. J. Panik, Regression modeling: methods, theory, and computation with SAS, CRC Press, Boca Raton, 2009 | MR | Zbl

[26] B. M. Poetscher, I. R. Prucha, “Mestimators for the non-linear regression model with dependent observations”, J. Econometrics, 32 (1986), 219–251 | DOI | MR | Zbl

[27] J. O. Rawlings, S. G. Pantula, D. A. Dickey, Applied regression analysis: a research tool, Springer, 2001 | MR

[28] A. I. Sakhanenko, “On existence of explicit asymptotically normal estimators in nonlinear regression problems”, Analytical Methods in Statistics, AMISTAT 2015, Springer Proceed. in Math. and Statist., 193, eds. J. Antoch, J. Jureckova, M. Maciak, M. Pesta, Springer, 2017, 159–187 | DOI | MR | Zbl

[29] E. N. Savinkina, A. I. Sakhanenko, “On improvement of statistical estimators in a power regression problem”, Sib. Electron. Mat. Izv., 16 (2019), 1901–1912 (Russian, English abstract) | DOI | MR | Zbl

[30] J. Shults, J. M. Hilbe, Quasi-least squares regression, CRC Press, 2014 | MR | Zbl

[31] C. G. Small, J. Wang, Numerical methods for nonlinear estimating equations, Clarendon press, Oxford, 2003 | MR | Zbl

[32] C. G. Small, J. Wang, Z. Yang, “Eliminating multiple root problems in estimation”, Statistical Science, 15:4 (2000), 313–341 | DOI | MR

[33] C. G. Small, Z. Yang, “Multiple roots of estimating functions”, Canad. J. Statist., 27:3 (1999), 585–598 | DOI | MR | Zbl

[34] G. A.F. Seber, C. J. Wild, Nonlinear regression, Wiley, New York, 2003 | MR

[35] A. W. Van der Vaart, Asymptotic statistics, Cambridge University Press, 2000 | MR | Zbl

[36] J. Wakefield, Bayesian and frequentist regression methods, Springer, 2013 | MR | Zbl

[37] D. S. Young, Handbook of regression methods, Chapman and Hall, 2017