On a boundary value problem for a pseudohyperbolic equation
Matematičeskie trudy, Tome 26 (2023) no. 1, pp. 192-207.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present article, we consider a mixed boundary value problem in a quarter-space for a pseudohyperbolic equation. We find conditions on the right-hand side of the equation that guarantee existence of solutions of this problem in Sobolev spaces with exponential weight.
@article{MT_2023_26_1_a9,
     author = {V. V. Shemetova},
     title = {On a boundary value problem for a pseudohyperbolic equation},
     journal = {Matemati\v{c}eskie trudy},
     pages = {192--207},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2023_26_1_a9/}
}
TY  - JOUR
AU  - V. V. Shemetova
TI  - On a boundary value problem for a pseudohyperbolic equation
JO  - Matematičeskie trudy
PY  - 2023
SP  - 192
EP  - 207
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2023_26_1_a9/
LA  - ru
ID  - MT_2023_26_1_a9
ER  - 
%0 Journal Article
%A V. V. Shemetova
%T On a boundary value problem for a pseudohyperbolic equation
%J Matematičeskie trudy
%D 2023
%P 192-207
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2023_26_1_a9/
%G ru
%F MT_2023_26_1_a9
V. V. Shemetova. On a boundary value problem for a pseudohyperbolic equation. Matematičeskie trudy, Tome 26 (2023) no. 1, pp. 192-207. http://geodesic.mathdoc.fr/item/MT_2023_26_1_a9/

[1] O. V. Besov, V. P. Ilin, S. M. Nikolskii, Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975

[2] L. N. Bondar, G. V. Demidenko, “Kraevye zadachi dlya odnogo psevdogiperbolicheskogo uravneniya v chetverti ploskosti”, Matem. tr., 24:2 (2021), 3–23

[3] L. N. Bondar, V. V. Shemetova, “O kraevykh zadachakh v chetverti ploskosti dlya odnogo psevdogiperbolicheskogo uravneniya”, Matem. tr., 25:2 (2022), 3–30

[4] V. Z. Vlasov, Tonkostennye uprugie sterzhni, Stroiizdat, M.–L., 1940

[5] S. I. Gerasimov, V. I. Erofeev, Zadachi volnovoi dinamiki elementov konstruktsii, FGUP “RFYaTs-VNIIEF”, Sarov, 2014

[6] G. V. Demndenko, ucheb. posobie, RITs NGU, Novosib. gos. un-t, Novosibirsk, 2015

[7] G. V. Demndenko, “Usloviya razreshimosti zadachi Koshi dlya psevdogiperbolicheskikh uravnenii”, Sib. matem. zhurn., 56:6 (2015), 1289–1303

[8] G. V. Demndenko, S. V. Uspenskii, Uravneniya i sistemy, ne razreshennye otnositelno starshei proizvodnoi, Nauchnaya kniga, Novosibirsk, 1998

[9] S. L. Sobolev, Izbrannye trudy, v. 1, Uravneniya matematicheskoi fiziki. Vychislitelnaya matematika i kubaturnye formuly, eds. Demndenko G. V., Vaskevich V. L., izd-vo in-ta Matematiki, filial “Geo” izd-va SO RAN, Novosibirsk, 2003

[10] X. G. Umarov, “Zadacha Koshi dlya uravneniya krutilnykh kolebanii nelineino-uprugogo sterzhnya beskonechnoi dliny”, Prikladnaya matematika i mekhanika, 83:2 (2019), 249–264

[11] X. G. Umarov, “Razrushenie i globalnaya razreshimost zadachi Koshi dlya psevdogiperbolicheskogo uravneniya, svyazannogo s obobschennym uravneniem Bussineska”, Sib. matem. zhurn., 63:3 (2022), 672–689

[12] S. V. Uspenskii, G. V. Demndenko, V. G. Perepelkin, Teoremy vlozheniya i prilozheniya k differentsialnym uravneniyam, Nauka, Novosibirsk, 1984

[13] L. N. Boudai, V. Nurmakhmatov, “On solvability of the boundary value problem for one pseudohyperbolic equation”, Sib. elektron. matem. izv., 18:2 (2021), 1046–1057

[14] I. Fedotov, M. Shatalov, J. Marais, “Hyperbolic and pseudo-hyperbolic equations in the theory of vibration”, Acta Mech., 227:11 (2016), 3315–3324

[15] I. Fedotov, L. V. Volevich, “The Cauchy problem for hyperbolic equations not resolved with respect to the highest time derivative”, Russ. J. Math. Phys., 13:3 (2006), 278–292