An extension of a theorem of Neumann
Matematičeskie trudy, Tome 26 (2023) no. 1, pp. 41-46
Voir la notice de l'article provenant de la source Math-Net.Ru
In the present article, we prove that every countable infinite group $G$ is embeddable into a countable infinite simple group $\overline{G}$ such that every equation of the form
$$w(x_1,\dots,x_n)=g,$$ is solvable in $\overline{G}$, where $w$ is a nontrivial reduced group word in variables
$x_1,\dots,x_n$, and $g\in G$.
@article{MT_2023_26_1_a2,
author = {V. G. Durnev and A. I. Zetkina},
title = {An extension of a theorem of {Neumann}},
journal = {Matemati\v{c}eskie trudy},
pages = {41--46},
publisher = {mathdoc},
volume = {26},
number = {1},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2023_26_1_a2/}
}
V. G. Durnev; A. I. Zetkina. An extension of a theorem of Neumann. Matematičeskie trudy, Tome 26 (2023) no. 1, pp. 41-46. http://geodesic.mathdoc.fr/item/MT_2023_26_1_a2/