An extension of a theorem of Neumann
Matematičeskie trudy, Tome 26 (2023) no. 1, pp. 41-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present article, we prove that every countable infinite group $G$ is embeddable into a countable infinite simple group $\overline{G}$ such that every equation of the form $$w(x_1,\dots,x_n)=g,$$ is solvable in $\overline{G}$, where $w$ is a nontrivial reduced group word in variables $x_1,\dots,x_n$, and $g\in G$.
@article{MT_2023_26_1_a2,
     author = {V. G. Durnev and A. I. Zetkina},
     title = {An extension of a theorem of {Neumann}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {41--46},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2023_26_1_a2/}
}
TY  - JOUR
AU  - V. G. Durnev
AU  - A. I. Zetkina
TI  - An extension of a theorem of Neumann
JO  - Matematičeskie trudy
PY  - 2023
SP  - 41
EP  - 46
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2023_26_1_a2/
LA  - ru
ID  - MT_2023_26_1_a2
ER  - 
%0 Journal Article
%A V. G. Durnev
%A A. I. Zetkina
%T An extension of a theorem of Neumann
%J Matematičeskie trudy
%D 2023
%P 41-46
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2023_26_1_a2/
%G ru
%F MT_2023_26_1_a2
V. G. Durnev; A. I. Zetkina. An extension of a theorem of Neumann. Matematičeskie trudy, Tome 26 (2023) no. 1, pp. 41-46. http://geodesic.mathdoc.fr/item/MT_2023_26_1_a2/

[1] M. I. Kargalolov, Yu. I. Merzlyakov, Osnovy teorii grupp, Nauka, M., 1982

[2] R. Lindon, P. Shupp, Kombinatornaya teoriya grupp, Mir, M., 1980

[3] V. Magnus, A. Karras, D. Soliter, Kombinatornaya teoriya grupp. Predstavlenie grupp v terminakh obrazuyuschikh i sootnosheii, Nauka, M., 1974

[4] B. H. Neumann, “Adjunction of elements to groups”, J. Lond. Math. Soc., 18 (1943), 4–11