On location of the matrix spectrum with respect to a parabola
Matematičeskie trudy, Tome 26 (2023) no. 1, pp. 26-40

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present article, we consider the problem on location of the matrix spectrum with respect to a parabola. In terms of solvability of a matrix Lyapunov type equation, we prove theorems on location of the matrix spectrum in certain domains $\mathcal{P}_i$ (bounded by a parabola) and $\mathcal{P}_e$ (lying outside the closure of $\mathcal{P}_i$). A solution to the matrix equation is constructed. We use this equation and prove an analog of the Lyapunov–Krein theorem on dichotomy of the matrix spectrum with respect to a parabola.
@article{MT_2023_26_1_a1,
     author = {G. V. Demidenko and V. S. Prokhorov},
     title = {On location of the matrix spectrum with respect to a parabola},
     journal = {Matemati\v{c}eskie trudy},
     pages = {26--40},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2023_26_1_a1/}
}
TY  - JOUR
AU  - G. V. Demidenko
AU  - V. S. Prokhorov
TI  - On location of the matrix spectrum with respect to a parabola
JO  - Matematičeskie trudy
PY  - 2023
SP  - 26
EP  - 40
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2023_26_1_a1/
LA  - ru
ID  - MT_2023_26_1_a1
ER  - 
%0 Journal Article
%A G. V. Demidenko
%A V. S. Prokhorov
%T On location of the matrix spectrum with respect to a parabola
%J Matematičeskie trudy
%D 2023
%P 26-40
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2023_26_1_a1/
%G ru
%F MT_2023_26_1_a1
G. V. Demidenko; V. S. Prokhorov. On location of the matrix spectrum with respect to a parabola. Matematičeskie trudy, Tome 26 (2023) no. 1, pp. 26-40. http://geodesic.mathdoc.fr/item/MT_2023_26_1_a1/