On locally boundedly exactly doubly transitive lie groups of transformations of the space with a subgroup of parallel translations
Matematičeskie trudy, Tome 25 (2022) no. 2, pp. 126-148
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper solves the problem of extending the group of parallel translations of a three-dimensional space to a locally boundedly exactly doubly transitive group of transformations for the case of a decomposable Lie algebra. The Lie algebra of the required Lie group of transformations is represented as a semidirect sum of a commutative three-dimensional ideal and a three-dimensional Lie subalgebra. Basis operators are found for all Lie algebras of doubly transitive Lie groups of transformations with a subgroup of parallel translations. The Lie groups of transformations are restored from the basis operators.
@article{MT_2022_25_2_a4,
author = {V. A. Kyrov},
title = {On locally boundedly exactly doubly transitive lie groups of transformations of the space with a subgroup of parallel translations},
journal = {Matemati\v{c}eskie trudy},
pages = {126--148},
publisher = {mathdoc},
volume = {25},
number = {2},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2022_25_2_a4/}
}
TY - JOUR AU - V. A. Kyrov TI - On locally boundedly exactly doubly transitive lie groups of transformations of the space with a subgroup of parallel translations JO - Matematičeskie trudy PY - 2022 SP - 126 EP - 148 VL - 25 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MT_2022_25_2_a4/ LA - ru ID - MT_2022_25_2_a4 ER -
%0 Journal Article %A V. A. Kyrov %T On locally boundedly exactly doubly transitive lie groups of transformations of the space with a subgroup of parallel translations %J Matematičeskie trudy %D 2022 %P 126-148 %V 25 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MT_2022_25_2_a4/ %G ru %F MT_2022_25_2_a4
V. A. Kyrov. On locally boundedly exactly doubly transitive lie groups of transformations of the space with a subgroup of parallel translations. Matematičeskie trudy, Tome 25 (2022) no. 2, pp. 126-148. http://geodesic.mathdoc.fr/item/MT_2022_25_2_a4/