On locally boundedly exactly doubly transitive lie groups of transformations of the space with a subgroup of parallel translations
Matematičeskie trudy, Tome 25 (2022) no. 2, pp. 126-148.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper solves the problem of extending the group of parallel translations of a three-dimensional space to a locally boundedly exactly doubly transitive group of transformations for the case of a decomposable Lie algebra. The Lie algebra of the required Lie group of transformations is represented as a semidirect sum of a commutative three-dimensional ideal and a three-dimensional Lie subalgebra. Basis operators are found for all Lie algebras of doubly transitive Lie groups of transformations with a subgroup of parallel translations. The Lie groups of transformations are restored from the basis operators.
@article{MT_2022_25_2_a4,
     author = {V. A. Kyrov},
     title = {On locally boundedly exactly doubly transitive lie groups of transformations of the space with a subgroup of parallel translations},
     journal = {Matemati\v{c}eskie trudy},
     pages = {126--148},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2022_25_2_a4/}
}
TY  - JOUR
AU  - V. A. Kyrov
TI  - On locally boundedly exactly doubly transitive lie groups of transformations of the space with a subgroup of parallel translations
JO  - Matematičeskie trudy
PY  - 2022
SP  - 126
EP  - 148
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2022_25_2_a4/
LA  - ru
ID  - MT_2022_25_2_a4
ER  - 
%0 Journal Article
%A V. A. Kyrov
%T On locally boundedly exactly doubly transitive lie groups of transformations of the space with a subgroup of parallel translations
%J Matematičeskie trudy
%D 2022
%P 126-148
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2022_25_2_a4/
%G ru
%F MT_2022_25_2_a4
V. A. Kyrov. On locally boundedly exactly doubly transitive lie groups of transformations of the space with a subgroup of parallel translations. Matematičeskie trudy, Tome 25 (2022) no. 2, pp. 126-148. http://geodesic.mathdoc.fr/item/MT_2022_25_2_a4/

[1] Gorbatsevich V.V., “Extension of transitive actions of Lie groups”, Izv. Math., 81:6 (2017), 1143–1154 | DOI | MR | Zbl

[2] Mikhailichenko G.G., Gruppovaya simmetriya fizicheskikh ctruktur, Barn. gos. ped. un-t, Barnaul, 2003

[3] Kyrov V.A., Mikhailichenko G. G., “Vlozhenie additivnoi dvumetricheskoi fenomenologicheski simmetrichnoi geometrii dvukh mnozhestv ranga (2,2) v dvumetricheskie fenomenologicheski simmetrichnye geometrii dvukh mnozhestv ranga (3,2)”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 28:3 (2018), 305–327 | DOI | MR | Zbl

[4] Bredon G., Vvedenie v teoriyu kompaktnykh grupp preobrazovanii, Nauka, M., 1980

[5] Kyrov V.A., “K voprosu o lokalnom rasshirenii gruppy parallelnykh perenosov trekhmernogo prostranstva”, Vladikavk. matem. zhurn., 23:1 (2021), 32–42 | DOI | MR | Zbl

[6] Ovsyannikov L.V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR

[7] Kostrikin A.I., Vvedenie v algebru, Nauka, M., 1977 | MR

[8] Turkowski P., “Lowdimensional real Lie algebras”, J. Math. Phys., 29:10 (1988), 2139–2144 | DOI | MR | Zbl

[9] Morozov V.V., “Klassifikatsiya nilpotentnykh algebr Li shetogo poryadka”, Izv. vuzov. Matem., 1958, no. 4, 161–171 | Zbl

[10] Mubarakzyanov G.M., “O razreshimykh algebrakh Li”, Izv. vuzov. Matem., 1963, no. 1, 114–123 | Zbl

[11] Mubarakzyanov G.M., “Klassifikatsiya razreshimykh algebr Li shestogo poryadka s odnim nenilpotentnym bazisnym elementom”, Izv. vuzov. Matem., 1963, no. 4, 104–116 | MR | Zbl

[12] Turkowski P., “Solvable Lie algebras of dimension six”, J. Math. Phys., 31:6 (1990), 1344–1350 | DOI | MR | Zbl

[13] Kyrov V.A., Bogdanova R.A., “Gruppy dvizhenii nekotorykh trekhmernykh geometrii maksimalnoi podvizhnosti”, Sib. matem. zhurn., 59:2 (2018), 412–421 | DOI | MR | Zbl