Determination of a non-stationary adsorption coefficient analytical in part of spatial variables
Matematičeskie trudy, Tome 25 (2022) no. 2, pp. 88-106

Voir la notice de l'article provenant de la source Math-Net.Ru

The multidimensional adsorption coefficient inverse problem is considered for a second order hyperbolic equation. It is supposed that this coefficient is continuous with respect to the variables $t$, $x$ and analytic in the other spatial variables. For solving this equation, the scale method of Banach spaces of analytic functions is applied. The problem are reduced to a system of nonlinear Volterra integral equations and the local existence, global uniqueness, stability estimates are established.
@article{MT_2022_25_2_a2,
     author = {D. K. Durdiev and Zh. D. Totieva},
     title = {Determination of a non-stationary adsorption coefficient analytical in part of spatial variables},
     journal = {Matemati\v{c}eskie trudy},
     pages = {88--106},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2022_25_2_a2/}
}
TY  - JOUR
AU  - D. K. Durdiev
AU  - Zh. D. Totieva
TI  - Determination of a non-stationary adsorption coefficient analytical in part of spatial variables
JO  - Matematičeskie trudy
PY  - 2022
SP  - 88
EP  - 106
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2022_25_2_a2/
LA  - ru
ID  - MT_2022_25_2_a2
ER  - 
%0 Journal Article
%A D. K. Durdiev
%A Zh. D. Totieva
%T Determination of a non-stationary adsorption coefficient analytical in part of spatial variables
%J Matematičeskie trudy
%D 2022
%P 88-106
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2022_25_2_a2/
%G ru
%F MT_2022_25_2_a2
D. K. Durdiev; Zh. D. Totieva. Determination of a non-stationary adsorption coefficient analytical in part of spatial variables. Matematičeskie trudy, Tome 25 (2022) no. 2, pp. 88-106. http://geodesic.mathdoc.fr/item/MT_2022_25_2_a2/