On boundary value problems in a quarter-plane for a pseudohyperbolic equation
Matematičeskie trudy, Tome 25 (2022) no. 2, pp. 3-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a mixed boundary value problem in a quarter-plane for a pseudohyperbolic equation and assume that the Lopatinskiĭ condition is satisfied. We find conditions on the right-hand side of the equation that guarantee existence of solutions of this problem in Sobolev spaces with exponential weight.
@article{MT_2022_25_2_a0,
     author = {L. N. Bondar' and V. V. Shemetova},
     title = {On boundary value problems in a quarter-plane for a pseudohyperbolic equation},
     journal = {Matemati\v{c}eskie trudy},
     pages = {3--30},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2022_25_2_a0/}
}
TY  - JOUR
AU  - L. N. Bondar'
AU  - V. V. Shemetova
TI  - On boundary value problems in a quarter-plane for a pseudohyperbolic equation
JO  - Matematičeskie trudy
PY  - 2022
SP  - 3
EP  - 30
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2022_25_2_a0/
LA  - ru
ID  - MT_2022_25_2_a0
ER  - 
%0 Journal Article
%A L. N. Bondar'
%A V. V. Shemetova
%T On boundary value problems in a quarter-plane for a pseudohyperbolic equation
%J Matematičeskie trudy
%D 2022
%P 3-30
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2022_25_2_a0/
%G ru
%F MT_2022_25_2_a0
L. N. Bondar'; V. V. Shemetova. On boundary value problems in a quarter-plane for a pseudohyperbolic equation. Matematičeskie trudy, Tome 25 (2022) no. 2, pp. 3-30. http://geodesic.mathdoc.fr/item/MT_2022_25_2_a0/

[1] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR

[2] Bondar L.N., Demidenko G.V., “Kraevye zadachi dlya odnogo psevdogiperbolicheskogo uravneniya v chetverti ploskosti”, Matem. tr, 24:2 (2021), 3–23

[3] Vlasov V. Z., Tonkostennye uprugie sterzhni, Stroiizdat, M.–L., 1940

[4] Gerasimov S. I., Erofeev V. I., Zadachi volnovoi dinamiki elementov konstruktsii, FGUP “RFYaTs-VNIIEF”, Sarov, 2014

[5] Demidenko G. V., Uspenskii S. V., Uravneniya i sistemy, ne razreshennye otnositelno starshei proizvodnoi, Nauchnaya kniga, Novosibirsk, 1998 | MR

[6] Demidenko G., “The Cauchy problem for pseudohyperbolic equations”, Selcuk J. Appl. Math, 1:1 (2001), 47–62 | MR

[7] Demidenko G. V., “Usloviya razreshimosti zadachi Koshi dlya psevdogiperbolicheskikh uravnenii”, Sib. matem. zhurn, 56:6 (2015), 1289–1303 | MR | Zbl

[8] Demidenko G. V., Prostranstva Soboleva i obobschennye resheniya, ucheb. posobie. Novosib. gos. un-t, RITs NGU, Novosibirsk, 2015

[9] Demidenko G.V., Kudryavtsev A.A., “Kraevye zadachi v chetverti ploskosti dlya uravneniya Releya–Bishopa”, Mat. zametki SVFU, 28:3 (2021), 5–18

[10] Sobolev S. L., Izbrannye trudy, v. 1, Uravneniya matematicheskoi fiziki. Vychislitelnaya matematika i kubaturnye formuly, eds. Demidenko G. V., Vaskevich V. L., izd-vo in-ta Matematiki, filial “Geo” izd-va SO RAN, Novosibirsk, 2003 | MR

[11] Umarov Kh. G., “Zadacha Koshi dlya uravneniya krutilnykh kolebanii nelineino-uprugogo sterzhnya beskonechnoi dliny”, Prikladnaya matematika i mekhanika, 83:2 (2019), 249–264 | DOI | Zbl

[12] Umarov Kh. G., “Razrushenie i globalnaya razreshimost zadachi Koshi dlya psevdogiperbolicheskogo uravneniya, svyazannogo s obobschennym uravneniem Bussineska”, Sib. matem. zhurn, 63:3 (2022), 672–689 | Zbl

[13] Uspenskii S. V., Demidenko G. V., Perepelkin V. G., Teoremy vlozheniya i prilozheniya k differentsialnym uravneniyam, Nauka, Novosibirsk, 1984 | MR

[14] Bishop R. E. D., “Longitudinal waves in beams”, Aeronautical Quarterly, 3:4 (1952), 280–293 | DOI | MR

[15] Fedotov I., Shatalov M., Marais J., “Hyperbolic and pseudo-hyperbolic equations in the theory of vibration”, Acta Mech., 227:11 (2016), 3315–3324 | DOI | MR | Zbl

[16] Fedotov I., Volevich L. V., “The Cauchy problem for hyperbolic equations not resolved with respect to the highest time derivative”, Russ. J. Math. Phys, 13:3 (2006), 278–292 | DOI | MR | Zbl

[17] Rao J. S., Advanced Theory of Vibration, Wiley Eastern, New Delhi, 1992