On a class of nonlinear integro-differential equations
Matematičeskie trudy, Tome 25 (2022) no. 1, pp. 192-220.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate a class of higher-order nonlinear integro-differential equations with noncompact monotone Hammerstein operator on the positive half-line. An existence theorem is proved for a nonnegative nontrivial solution in a certain Sobolev space. The asymptotic behavior of the solution at infinity is studied. At the end, we give specific examples of such equations.
@article{MT_2022_25_1_a8,
     author = {Kh. A. Khachatryan and H. S. Petrosyan},
     title = {On a class of nonlinear integro-differential equations},
     journal = {Matemati\v{c}eskie trudy},
     pages = {192--220},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2022_25_1_a8/}
}
TY  - JOUR
AU  - Kh. A. Khachatryan
AU  - H. S. Petrosyan
TI  - On a class of nonlinear integro-differential equations
JO  - Matematičeskie trudy
PY  - 2022
SP  - 192
EP  - 220
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2022_25_1_a8/
LA  - ru
ID  - MT_2022_25_1_a8
ER  - 
%0 Journal Article
%A Kh. A. Khachatryan
%A H. S. Petrosyan
%T On a class of nonlinear integro-differential equations
%J Matematičeskie trudy
%D 2022
%P 192-220
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2022_25_1_a8/
%G ru
%F MT_2022_25_1_a8
Kh. A. Khachatryan; H. S. Petrosyan. On a class of nonlinear integro-differential equations. Matematičeskie trudy, Tome 25 (2022) no. 1, pp. 192-220. http://geodesic.mathdoc.fr/item/MT_2022_25_1_a8/

[1] Casti J., Kalaba R., Imbedding methods in applied mathematics, Addison-Wesley Reading, MA-London-Amsterdam, 1973 | MR | Zbl

[2] Khachatryan A.Kh., Khachatryan Kh.A., “O razreshimosti odnogo nelineinogo integro-differentsialnogo uravneniya, voznikayuschego v zadache o raspredelenii dokhoda”, Zhurn. vychisl. matem. i matem. fiz., 50:10 (2010), 1793–1802 | MR | Zbl

[3] Sargan J.D., “The distribution of wealth”, Econometrica, 1957, no. 25, 568–590 | DOI | MR | Zbl

[4] Kakhktsyan V.M., Khachatryan A.Kh., “Ob analitichesko-chislennom reshenii odnogo nelineinogo integro-differentsialnogo uravneniya, voznikayuschego v ekonometrike”, Zh. vychisl. matem. i matem. fiz., 53:7 (2013), 1108–1112 | DOI | MR | Zbl

[5] Khachatryan A.Kh., Khachatryan Kh.A., “On solvability of a nonlinear problem in theory of income distribution”, Eurasian Math. J., 2:2 (2011), 75–88 | MR | Zbl

[6] Khachatryan Kh.A., “Razreshimost odnogo klassa integro-differentsialnykh uravnenii vtorogo poryadka s monotonnoi nelineinostyu na poluosi”, Izv. RAN. Ser. matem., 74:5 (2010), 191–204 | DOI | MR | Zbl

[7] Khachatryan Kh.A., Petrosyan A.S., “Ob odnoi nachalno-kraevoi zadache dlya integro-differentsialnogo uravneniya vtorogo poryadka so stepennoi nelineinostyu”, Izv. vuzov. Matem., 62:6 (2018), 48–62 | MR | Zbl

[8] Khachatryan Kh.A., “O razreshimosti odnogo klassa nelineinykh integro-differentsialnykh uravnenii vysshego poryadka s nekompaktnym integralnym operatorom tipa Gammershteina”, Ufimsk. matem. zhurn., 3:1 (2011), 103–112 | Zbl

[9] Kolmogorov A.N., Fomin S.V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1981 | MR

[10] Arabadzhyan L.G., “Ob odnom integralnom uravnenii teorii perenosa v neodnorodnoi srede”, Differents. uravneniya, 23:9 (1987), 1618–1622 | MR | Zbl

[11] Khachatryan Kh.A., “On a class of nonlinear integral equations with a noncompact operator”, Journal of Contemporary Mathem. Analysis, 46:2 (2011), 89–100 | DOI | MR | Zbl

[12] Arabadzhyan L.G., Engibaryan N.B., “Uravneniya v svertkakh i nelineinye funktsionalnye uravneniya”, Itogi nauki i tekhn. Ser. Mat. anal., 22, VINITI, M., 1984, 175–244 | MR

[13] Budak B.M., Fomin S.V., Kratnye integraly i ryady, fizmatlit, M., 1981

[14] Diekmann O., “Thresholds and travelling waves for the geographical spread of infection”, J.Math. Biology, 6:2 (1978), 109–130 | DOI | MR | Zbl