Estimates of solutions for one biological model
Matematičeskie trudy, Tome 25 (2022) no. 1, pp. 152-176.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we consider a model of immune response in plants described by nonlinear system of delay differential equations. The delay parameter is responsible for the ripening time of plant tissue. Asymptotic properties of solutions to this system in the case of infection are studied. Conditions for the asymptotic stability of the equilibrium point corresponding to the infected plant are obtained, estimates for the attraction set of this equilibrium point are indicated, and estimates of solutions characterizing the stabilization rate at infinity are established. All values present in the estimates are expressed explicitly in terms of the coefficients of the system. The results are obtained using Lyapunov–Krasovskii functionals.
@article{MT_2022_25_1_a6,
     author = {M. A. Skvortsova},
     title = {Estimates of solutions for one biological model},
     journal = {Matemati\v{c}eskie trudy},
     pages = {152--176},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2022_25_1_a6/}
}
TY  - JOUR
AU  - M. A. Skvortsova
TI  - Estimates of solutions for one biological model
JO  - Matematičeskie trudy
PY  - 2022
SP  - 152
EP  - 176
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2022_25_1_a6/
LA  - ru
ID  - MT_2022_25_1_a6
ER  - 
%0 Journal Article
%A M. A. Skvortsova
%T Estimates of solutions for one biological model
%J Matematičeskie trudy
%D 2022
%P 152-176
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2022_25_1_a6/
%G ru
%F MT_2022_25_1_a6
M. A. Skvortsova. Estimates of solutions for one biological model. Matematičeskie trudy, Tome 25 (2022) no. 1, pp. 152-176. http://geodesic.mathdoc.fr/item/MT_2022_25_1_a6/

[1] Demidenko G. V., Matrichnye uravneniya, Uchebnoe posobie, Izd-vo Novosib. un-ta, Novosibirsk, 2009

[2] Demidenko G. V., Matveeva I. I., “Asimptoticheskie svoistva reshenii differentsialnykh uravnenii s zapazdyvayuschim argumentom”, Vestn. NGU. Seriya: matematika, mekhanika, informatika, 5:3 (2005), 20–28 | Zbl

[3] Demidenko G. V., Matveeva I. I., “Ustoichivost reshenii differentsialnykh uravnenii s zapazdyvayuschim argumentom i periodicheskimi koeffitsientami v lineinykh chlenakh”, Sib. matem. zhurn., 48:5 (2007), 1025–1040 | MR | Zbl

[4] Demidenko G. V., Matveeva I. I., “Ob otsenkakh reshenii sistem differentsialnykh uravnenii neitralnogo tipa s periodicheskimi koeffitsientami”, Sib. matem. zhurn., 55:5 (2014), 1059–1077 | MR

[5] Demidenko G. V., Matveeva I. I., Skvortsova M. A., “Otsenki reshenii differentsialnykh uravnenii neitralnogo tipa s periodicheskimi koeffitsientami v lineinykh chlenakh”, Sib. matem. zhurn., 60:5 (2019), 1063–1079 | MR | Zbl

[6] Krasovskii N. N., Nekotorye zadachi teorii ustoichivosti dvizheniya, Gos. izd. fiz.-mat. literatury, M., 1959

[7] Matveeva I. I., “Otsenki reshenii odnogo klassa sistem nelineinykh differentsialnykh uravnenii s zapazdyvayuschim argumentom”, Sib. zhurn. industr. matematiki, 16:3 (2013), 122–132 | Zbl

[8] Matveeva I. I., “Ob eksponentsialnoi ustoichivosti reshenii periodicheskikh sistem neitralnogo tipa”, Sib. matem. zhurn., 58:2 (2017), 344–352 | MR | Zbl

[9] Matveeva I. I., “Ob eksponentsialnoi ustoichivosti reshenii periodicheskikh sistem neitralnogo tipa s neskolkimi zapazdyvaniyami”, Differents. uravneniya, 53:6 (2017), 730–740 | DOI | Zbl

[10] Matveeva I. I., “Otsenki eksponentsialnogo ubyvaniya reshenii odnogo klassa nelineinykh sistem neitralnogo tipa s periodicheskimi koeffitsientami”, Zhurn. vychisl. matematiki i mat. fiziki, 60:4 (2020), 612–620 | DOI | Zbl

[11] Skvortsova M. A., “Asimptoticheskie svoistva reshenii v modeli protivobakterialnogo immunnogo otveta”, Sib. elektron. matem. izv., 15 (2018), 1198–1215 | MR | Zbl

[12] Skvortsova M. A., “Asimptoticheskie svoistva reshenii v modelyakh biokhimicheskikh reaktsii”, Dinamicheskie sistemy, 10(38):1 (2020), 97–114 | Zbl

[13] Skvortsova M. A., “Otsenki reshenii v modeli vzaimodeistviya populyatsii s neskolkimi zapazdyvaniyami”, Itogi nauki i tekhniki. Seriya “Sovremennaya matematika i ee prilozheniya. Tematicheskie obzory”, 188, 2020, 84–105 | DOI

[14] Skvortsova M. A., Yskak T., “Asimptoticheskoe povedenie reshenii v odnoi modeli «khischnik-zhertva» s zapazdyvaniem”, Sib. matem. zhurn., 62:2 (2021), 402–416 | Zbl

[15] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970

[16] Khusainov D. Ya., Ivanov A. F., Kozhametov A. T., “Otsenki skhodimosti reshenii lineinykh statsionarnykh sistem differentsialno-raznostnykh uravnenii s postoyannym zapazdyvaniem”, Differents. uravneniya, 41:8 (2005), 1137–1140 | MR | Zbl

[17] Yskak T., “Otsenki reshenii odnogo klassa sistem uravnenii neitralnogo tipa s raspredelennym zapazdyvaniem”, Sib. elektron. matem. izv., 17 (2020), 416–427 | MR | Zbl

[18] Demidenko G. V., “Stability of solutions to linear differential equations of neutral type”, Journal of Analysis and Applications, 7:3 (2009), 119–130 | MR | Zbl

[19] Demidenko G. V., Matveeva I. I., “Estimates for solutions to a class of nonlinear time-delay systems of neutral type”, Electron. J. Differential Equations, 2015:34 (2015), 1–14 | MR

[20] Demidenko G. V., Matveeva I. I., “Estimates for solutions to a class of time-delay systems of neutral type with periodic coefficients and several delays”, Electron. J. Qual. Theory Differ. Equ., 2015:83 (2015), 1–22 | DOI | MR

[21] Matveeva I. I., “Exponential stability of solutions to nonlinear time-varying delay systems of neutral type equations with periodic coefficients”, Electron. J. Differential Equations, 2020:20 (2020), 1–12 | MR

[22] Mondié S., Kharitonov V. L., “Exponential estimates for retarded time-delay systems: LMI approach”, IEEE Trans. Automat. Control, 50:2 (2005), 268–273 | DOI | MR | Zbl

[23] Neofytou G., Kyrychko Y. N., and Blyuss K. B., “Time-delayed model of immune response in plants”, J. Theoret. Biol., 389 (2016), 28–39 | DOI | MR | Zbl

[24] Skvortsova M. A., “Asymptotic properties of solutions to a system describing the spread of avian influenza”, Sib. Elektron. Mat. Izv., 13 (2016), 782–798 | MR | Zbl

[25] Skvortsova M. A., “Asymptotic behavior of solutions in a model of immune response in plants”, Lobachevskii J. Math., 42:14 (2021), 3505–3517 | DOI | MR | Zbl