The Cauchy problem for the defocusing nonlinear Schr\"odinger equation with a loaded term
Matematičeskie trudy, Tome 25 (2022) no. 1, pp. 102-133
Voir la notice de l'article provenant de la source Math-Net.Ru
The method of inverse spectral problems is applied for integrating the defocusing nonlinear Scrödinger (DNS) equation with loaded terms in the class of infinite-gap periodic functions. We describe the evolution of the spectral data for a periodic Dirac operator whose coefficient is a solution to the DNS equation with loaded terms. We prove the following assertions. (1) It the initial function is real-valued, $\pi$-periodic, and analytic then the solution of the Cauchy problem for the DNS equation with loaded terms is a real-valued analytic function in $x$. (2) If $\pi/2$ is the period (or antiperiod) of the initial function then $\pi/2$ is the period (antiperiod) of the solution of the Cauchy problem problem with respect to $x$.
@article{MT_2022_25_1_a4,
author = {U. B. Muminov and A. B. Khasanov},
title = {The {Cauchy} problem for the defocusing nonlinear {Schr\"odinger} equation with a loaded term},
journal = {Matemati\v{c}eskie trudy},
pages = {102--133},
publisher = {mathdoc},
volume = {25},
number = {1},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2022_25_1_a4/}
}
TY - JOUR AU - U. B. Muminov AU - A. B. Khasanov TI - The Cauchy problem for the defocusing nonlinear Schr\"odinger equation with a loaded term JO - Matematičeskie trudy PY - 2022 SP - 102 EP - 133 VL - 25 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MT_2022_25_1_a4/ LA - ru ID - MT_2022_25_1_a4 ER -
U. B. Muminov; A. B. Khasanov. The Cauchy problem for the defocusing nonlinear Schr\"odinger equation with a loaded term. Matematičeskie trudy, Tome 25 (2022) no. 1, pp. 102-133. http://geodesic.mathdoc.fr/item/MT_2022_25_1_a4/