An exact constant on the estimation of the approximation error of classes of differentiable functions by the second-order Cesaro means
Matematičeskie trudy, Tome 24 (2021) no. 2, pp. 150-159

Voir la notice de l'article provenant de la source Math-Net.Ru

In the article, we study a problem related to the approximation of continuous functions by linear methods. In the class of functions satisfying Lipschitz condition, we obtain the best constant for the approximation by Cesaro means of second order.
@article{MT_2021_24_2_a8,
     author = {O. G. Rovenskaya},
     title = {An exact constant on the estimation of the approximation error of classes of differentiable functions by the second-order {Cesaro} means},
     journal = {Matemati\v{c}eskie trudy},
     pages = {150--159},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2021_24_2_a8/}
}
TY  - JOUR
AU  - O. G. Rovenskaya
TI  - An exact constant on the estimation of the approximation error of classes of differentiable functions by the second-order Cesaro means
JO  - Matematičeskie trudy
PY  - 2021
SP  - 150
EP  - 159
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2021_24_2_a8/
LA  - ru
ID  - MT_2021_24_2_a8
ER  - 
%0 Journal Article
%A O. G. Rovenskaya
%T An exact constant on the estimation of the approximation error of classes of differentiable functions by the second-order Cesaro means
%J Matematičeskie trudy
%D 2021
%P 150-159
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2021_24_2_a8/
%G ru
%F MT_2021_24_2_a8
O. G. Rovenskaya. An exact constant on the estimation of the approximation error of classes of differentiable functions by the second-order Cesaro means. Matematičeskie trudy, Tome 24 (2021) no. 2, pp. 150-159. http://geodesic.mathdoc.fr/item/MT_2021_24_2_a8/