An exact constant on the estimation of the approximation error of classes of differentiable functions by the second-order Cesaro means
Matematičeskie trudy, Tome 24 (2021) no. 2, pp. 150-159
Voir la notice de l'article provenant de la source Math-Net.Ru
In the article, we study a problem related to the approximation of continuous functions by linear methods. In the class of functions satisfying Lipschitz condition, we obtain the best constant for the approximation by Cesaro means of second order.
@article{MT_2021_24_2_a8,
author = {O. G. Rovenskaya},
title = {An exact constant on the estimation of the approximation error of classes of differentiable functions by the second-order {Cesaro} means},
journal = {Matemati\v{c}eskie trudy},
pages = {150--159},
publisher = {mathdoc},
volume = {24},
number = {2},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2021_24_2_a8/}
}
TY - JOUR AU - O. G. Rovenskaya TI - An exact constant on the estimation of the approximation error of classes of differentiable functions by the second-order Cesaro means JO - Matematičeskie trudy PY - 2021 SP - 150 EP - 159 VL - 24 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MT_2021_24_2_a8/ LA - ru ID - MT_2021_24_2_a8 ER -
%0 Journal Article %A O. G. Rovenskaya %T An exact constant on the estimation of the approximation error of classes of differentiable functions by the second-order Cesaro means %J Matematičeskie trudy %D 2021 %P 150-159 %V 24 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MT_2021_24_2_a8/ %G ru %F MT_2021_24_2_a8
O. G. Rovenskaya. An exact constant on the estimation of the approximation error of classes of differentiable functions by the second-order Cesaro means. Matematičeskie trudy, Tome 24 (2021) no. 2, pp. 150-159. http://geodesic.mathdoc.fr/item/MT_2021_24_2_a8/