On the accuracy of approximation of the binomial distribution by the Poisson law
Matematičeskie trudy, Tome 24 (2021) no. 2, pp. 122-149

Voir la notice de l'article provenant de la source Math-Net.Ru

We derive many new estimates for the proximity of the binomial distribution to the Poisson distribution in the uniform metric and propose a combined approach to estimating the distance in a uniform metric when, for small $n$ and large $p$, the estimation is performed on using a computer and, for the remaining values of $n$ and $p$, the estimates obtained analytically are used.
@article{MT_2021_24_2_a7,
     author = {S. V. Nagaev},
     title = {On the accuracy of approximation of the binomial distribution by the {Poisson} law},
     journal = {Matemati\v{c}eskie trudy},
     pages = {122--149},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2021_24_2_a7/}
}
TY  - JOUR
AU  - S. V. Nagaev
TI  - On the accuracy of approximation of the binomial distribution by the Poisson law
JO  - Matematičeskie trudy
PY  - 2021
SP  - 122
EP  - 149
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2021_24_2_a7/
LA  - ru
ID  - MT_2021_24_2_a7
ER  - 
%0 Journal Article
%A S. V. Nagaev
%T On the accuracy of approximation of the binomial distribution by the Poisson law
%J Matematičeskie trudy
%D 2021
%P 122-149
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2021_24_2_a7/
%G ru
%F MT_2021_24_2_a7
S. V. Nagaev. On the accuracy of approximation of the binomial distribution by the Poisson law. Matematičeskie trudy, Tome 24 (2021) no. 2, pp. 122-149. http://geodesic.mathdoc.fr/item/MT_2021_24_2_a7/