The inversion of series of resolvents of a closed operator and some of its applications
Matematičeskie trudy, Tome 24 (2021) no. 2, pp. 105-121.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe the left inverse for operators representable by a sum of a series in the values of the resolvent of a densely defined closed operator in a complex Banach space. We give some applications of this result to regularization of the corresponding equations of the first kind and consider several examples.
@article{MT_2021_24_2_a6,
     author = {A. R. Mirotin},
     title = {The inversion of series of resolvents of a closed operator and some of its applications},
     journal = {Matemati\v{c}eskie trudy},
     pages = {105--121},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2021_24_2_a6/}
}
TY  - JOUR
AU  - A. R. Mirotin
TI  - The inversion of series of resolvents of a closed operator and some of its applications
JO  - Matematičeskie trudy
PY  - 2021
SP  - 105
EP  - 121
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2021_24_2_a6/
LA  - ru
ID  - MT_2021_24_2_a6
ER  - 
%0 Journal Article
%A A. R. Mirotin
%T The inversion of series of resolvents of a closed operator and some of its applications
%J Matematičeskie trudy
%D 2021
%P 105-121
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2021_24_2_a6/
%G ru
%F MT_2021_24_2_a6
A. R. Mirotin. The inversion of series of resolvents of a closed operator and some of its applications. Matematičeskie trudy, Tome 24 (2021) no. 2, pp. 105-121. http://geodesic.mathdoc.fr/item/MT_2021_24_2_a6/

[1] Atvinovskii A. A., Mirotin A. R., “Ob odnom funktsionalnom ischislenii zamknutykh operatorov v banakhovom prostranstve. I”, Izv. vuzov. Matem., 2013, no. 10, 3–15 | Zbl

[2] Atvinovskii A. A., Mirotin A. R., “Ob odnom funktsionalnom ischislenii zamknutykh operatorov v banakhovom prostranstve. II”, Izv. vuzov. Matem., 2015, no. 5, 3–16 | Zbl

[3] Danford N., Shvarts Dzh. T., Lineinye operatory, v. 1, Obschaya teoriya, Izd-vo inostr. lit., M., 1962

[4] Ivanov V. K., Vasin V. V., Tanana V. P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978

[5] Lavrentev M. M., Romanov V. G., Shishatskii S. P., Nekorrektnye zadachi matematicheskoi fiziki i analiza, Nauka, M., 1980

[6] Leontev A. F., Tselye funktsii. Ryady eksponent, Nauka, M., 1983

[7] Leonteva T. A., “Predstavlenie funktsii, analiticheskikh v zamknutoi oblasti, ryadami ratsionalnykh funktsii”, Matem. zametki, 4:2 (1968), 191–200

[8] Mirotin A. R., “Obraschenie operatorno-monotonnykh funktsii negativnykh operatorov v banakhovom prostranstve”, Tr. in-ta matematiki. Minsk, 12:1 (2004), 104–108

[9] Mirotin A. R., Atvinovskii A. A., “Obraschenie lineinoi kombinatsii znachenii rezolventy zamknutogo operatora”, Probl. fiz., matem. i tekhn., 2014, no. 3(20), 77–79 | Zbl

[10] Mirotin A. R., Atvinovskii A. A., “O multiplikativnom obraschenii ryadov Volfa — Danzhua”, Tr. IMM UrO RAN, 25, no. 4, 2019, 147–154

[11] A. N. Tikhonov, A. V. Goncharskii (red.), Nekorrektnye zadachi estestvoznaniya, Izd-vo Mosk. un-ta, M., 1987

[12] Sibert I. M., Tsepi, signaly, sistemy, v. 1, Mir, M., 1988

[13] Sibilev R. V., “Teorema edinstvennosti dlya ryadov Volfa — Danzhua”, Algebra i analiz, 7:1 (1995), 170–199 | Zbl

[14] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1979

[15] Brown A., Shields A., Zeller K., “On absolutely convergent exponential sums”, Trans. Amer. Math. Soc., 96:1 (1960), 162–183 | DOI | Zbl

[16] Gohberg I., Goldberg S., Kaashoek M., Classes of Linear Operators, v. 1, Birkhäuser, Basel, 1990 | Zbl

[17] Kabanikhin S. I., “Definitions and examples of inverse and ill-posed problems”, J. Inverse Ill-Posed Probl., 16 (2008), 317–357 | Zbl

[18] Kirsch A., An Introduction to the Mathematical Theory of Inverse Problems, Appl. Math. Sci., 120, 2nd ed., Springer, Berlin, 2011 | DOI | Zbl

[19] Mirotin A. R., Equations of the First Kind and the Inversion of Series of Resolvents of a Closed Operator, arXiv: 1908.02998v2 [math.FA]