Multiply transitive Lie group of transformations as a~physical structure
Matematičeskie trudy, Tome 24 (2021) no. 2, pp. 81-104.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish a connection between physical structures and Lie groups and prove that the physical structure of rank ($n+1,2$), $n\in\mathbb{N}$, on a smooth manifold is isotopic to an almost $n$-transitive Lie group of transformations. Afterwards, we prove that an almost $n$-transitive Lie group of transformations is isotopic to a physical structure of rank ($n+1,2$).
@article{MT_2021_24_2_a5,
     author = {V. A. Kyrov},
     title = {Multiply transitive {Lie} group of transformations as a~physical structure},
     journal = {Matemati\v{c}eskie trudy},
     pages = {81--104},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2021_24_2_a5/}
}
TY  - JOUR
AU  - V. A. Kyrov
TI  - Multiply transitive Lie group of transformations as a~physical structure
JO  - Matematičeskie trudy
PY  - 2021
SP  - 81
EP  - 104
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2021_24_2_a5/
LA  - ru
ID  - MT_2021_24_2_a5
ER  - 
%0 Journal Article
%A V. A. Kyrov
%T Multiply transitive Lie group of transformations as a~physical structure
%J Matematičeskie trudy
%D 2021
%P 81-104
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2021_24_2_a5/
%G ru
%F MT_2021_24_2_a5
V. A. Kyrov. Multiply transitive Lie group of transformations as a~physical structure. Matematičeskie trudy, Tome 24 (2021) no. 2, pp. 81-104. http://geodesic.mathdoc.fr/item/MT_2021_24_2_a5/

[1] Belousov V. D., Osnovy teorii kvazigrupp i lup, Nauka, M., 1967

[2] Borodin A. N., Gruda i fizicheskaya struktura ranga $(2,2)$, Prilozhenie k knige G. G. Mikhailichenko «Matematicheskie osnovy i rezultaty teorii fizicheskikh struktur», RIO GAGU, Gorno-Altaisk, 2016

[3] Gorbatsevich V. V., Onischik A. L., “Gruppy Li preobrazovanii”, Itogi nauki i tekhniki, 20, VINITI, M., 1988, 108–248

[4] Ionin V. K., “K opredeleniyu fizicheskikh struktur”, Trudy IM SO RAN, 21 (1992), 42–51 | Zbl

[5] Kaluzhnin L. A., “Tranzitivnaya gruppa”, Matematicheskaya entsiklopediya, v. 5, Izd-vo «Sovetskaya entsiklopediya», M., 1985, 411 pp. | Zbl

[6] Kyrov V. A., “Affinnaya geometriya kak fizicheskaya struktura”, Zhurn. SFU. Ser. Matem.i fiz., 1:4 (2008), 460–464 | Zbl

[7] Kyrov V. A., “Proektivnaya geometriya i teoriya fizicheskikh struktur”, Izv. vuzov. Matem., 2008, no. 11, 48–59 | Zbl

[8] Kyrov V. A., “Fenomenologicheski simmetrichnye lokalnye gruppy Li preobrazovanii prostranstva $R^s$”, Izv. vuzov. Matem., 2009, no. 7, 10–21 | Zbl

[9] Kyrov V. A., “Kvazigruppovye svoistva affinnykh grupp”, Prilozhenie k zhurnalu «Vestn. Tomskogo gos. un-ta. Ser. Matem., kibern., inform.», 23 (2012), 37–41

[10] Kyrov V. A., “Proektivnaya geometriya i fenomenologicheskaya simmetriya”, Zhurn. SFU. Ser. Matem. i fiz., 5:1 (2012), 82–90 | Zbl

[11] Kyrov V. A., “Vlozhenie fenomenologicheski simmetrichnykh geometrii dvukh mnozhestv ranga $(N,2)$ v fenomenologicheski simmetrichnye geometrii dvukh mnozhestv ranga $(N+1,2)$”, Vestn. Udmurdsk. un-ta. Matem., mekh., kompyut. nauki, 26:3 (2016), 312–323 | DOI | Zbl

[12] Kyrov V. A., “Vlozhenie fenomenologicheski simmetrichnykh geometrii dvukh mnozhestv ranga $(N,M)$ v fenomenologicheski simmetrichnye geometrii dvukh mnozhestv ranga $(N+1,M)$”, Vestn. Udmurdsk. un-ta. Matem., mekh., kompyut. nauki, 27:1 (2017), 42–53 | DOI | Zbl

[13] Kyrov V. A., “O vlozhenii dvumetricheskikh fenomenologicheski simmetrichnykh geometrii”, Vestn. Tomsk. gos. un-ta. Ser. Matem. i mekh., 2018, no. 56, 5–16 | DOI

[14] Kyrov V. A., “Giperkompleksnye chisla v nekotorykh geometriyakh dvukh mnozhestv. II”, Izv. vuzov. Matem., 2020, no. 5, 39–54 | DOI | Zbl

[15] Kyrov V. A., Mikhailichenko G. G., “Vlozhenie additivnoi dvumetricheskoi fenomenologicheski simmetrichnoi geometrii dvukh mnozhestv ranga (2,2) v dvumetricheskie fenomenologicheski simmetrichnye geometrii dvukh mnozhestv ranga $(3,2)$”, Vestn. Udmurdsk. un-ta. Matem., mekh., kompyut. nauki, 28:3 (2018), 305–327 | DOI | Zbl

[16] Kyrov V. A., Muradov R. M., “Nekotorye gruppy preobrazovanii i ikh invarianty”, Vestn. NGU. Ser. Matem., mekh., inform., 9:3 (2009), 54–63 | Zbl

[17] Mikhailichenko G. G., “Fenomenologicheskaya i gruppovaya simmetrii v geometrii dvukh mnozhestv (teorii fizicheskikh struktur)”, Dokl. AN SSSR, 284:1 (1985), 39–43 | Zbl

[18] Mikhailichenko G. G., Matematicheskie osnovy i rezultaty teorii fizicheskikh struktur, RIO GAGU, Gorno-Altaisk, 2016

[19] Postnikov M. M., Gruppy i algebry Li, Nauka, M., 1982

[20] Simonov A. A., “O gruppakh, blizkikh k tochno tranzitivnym $(n{+}1,2)$”, Izvestiya RAN. Ser. matem., 78:6 (2014), 153–178 | DOI | Zbl

[21] Simonov A. A., “Psevdomatrichnye gruppy i fizicheskie struktury $(n{+}1,2)$”, Sib. matem. zhurn., 56:1 (2015), 132–143 | DOI

[22] Kyrov V. A., “Commutative hypercomplex numbers and the geometry of two sets”, Zhurn. SFU. Ser. Matem. i fiz., 13:3 (2020), 373–382 | DOI | Zbl

[23] Mikhailichenko G. G. and Kyrov V. A., “Hypercomplex numbers in some geometries of two sets. I”, Russian Math. (Izv. VUZ, Mat.), 61:7 (2017), 15–24 | DOI | Zbl

[24] Tits J., “Sur les groupes doublement transitif continus”, Comment. Math. Helv., 26 (1952), 203–224 | DOI | Zbl