Multiply transitive Lie group of transformations as a~physical structure
Matematičeskie trudy, Tome 24 (2021) no. 2, pp. 81-104
Voir la notice de l'article provenant de la source Math-Net.Ru
We establish a connection between physical structures and Lie groups and prove that the physical structure of rank ($n+1,2$), $n\in\mathbb{N}$, on a smooth manifold is isotopic to an almost $n$-transitive Lie group of transformations. Afterwards, we prove that an almost $n$-transitive Lie group of transformations is isotopic to a physical structure of rank ($n+1,2$).
@article{MT_2021_24_2_a5,
author = {V. A. Kyrov},
title = {Multiply transitive {Lie} group of transformations as a~physical structure},
journal = {Matemati\v{c}eskie trudy},
pages = {81--104},
publisher = {mathdoc},
volume = {24},
number = {2},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2021_24_2_a5/}
}
V. A. Kyrov. Multiply transitive Lie group of transformations as a~physical structure. Matematičeskie trudy, Tome 24 (2021) no. 2, pp. 81-104. http://geodesic.mathdoc.fr/item/MT_2021_24_2_a5/