Multiply transitive Lie group of transformations as a~physical structure
Matematičeskie trudy, Tome 24 (2021) no. 2, pp. 81-104

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish a connection between physical structures and Lie groups and prove that the physical structure of rank ($n+1,2$), $n\in\mathbb{N}$, on a smooth manifold is isotopic to an almost $n$-transitive Lie group of transformations. Afterwards, we prove that an almost $n$-transitive Lie group of transformations is isotopic to a physical structure of rank ($n+1,2$).
@article{MT_2021_24_2_a5,
     author = {V. A. Kyrov},
     title = {Multiply transitive {Lie} group of transformations as a~physical structure},
     journal = {Matemati\v{c}eskie trudy},
     pages = {81--104},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2021_24_2_a5/}
}
TY  - JOUR
AU  - V. A. Kyrov
TI  - Multiply transitive Lie group of transformations as a~physical structure
JO  - Matematičeskie trudy
PY  - 2021
SP  - 81
EP  - 104
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2021_24_2_a5/
LA  - ru
ID  - MT_2021_24_2_a5
ER  - 
%0 Journal Article
%A V. A. Kyrov
%T Multiply transitive Lie group of transformations as a~physical structure
%J Matematičeskie trudy
%D 2021
%P 81-104
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2021_24_2_a5/
%G ru
%F MT_2021_24_2_a5
V. A. Kyrov. Multiply transitive Lie group of transformations as a~physical structure. Matematičeskie trudy, Tome 24 (2021) no. 2, pp. 81-104. http://geodesic.mathdoc.fr/item/MT_2021_24_2_a5/