Линейная неустойчивость состояния покоя для МГД модели несжимаемой полимерной жидкости в случае абсолютной проводимости
Matematičeskie trudy, Tome 24 (2021) no. 1, pp. 35-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MT_2021_24_1_a1,
     author = {A. M. Blokhin and D. L. Tkachev},
     title = {{\CYRL}{\cyri}{\cyrn}{\cyre}{\cyrishrt}{\cyrn}{\cyra}{\cyrya} {\cyrn}{\cyre}{\cyru}{\cyrs}{\cyrt}{\cyro}{\cyrishrt}{\cyrch}{\cyri}{\cyrv}{\cyro}{\cyrs}{\cyrt}{\cyrsftsn} {\cyrs}{\cyro}{\cyrs}{\cyrt}{\cyro}{\cyrya}{\cyrn}{\cyri}{\cyrya} {\cyrp}{\cyro}{\cyrk}{\cyro}{\cyrya} {\cyrd}{\cyrl}{\cyrya} {{\CYRM}{\CYRG}{\CYRD}} {\cyrm}{\cyro}{\cyrd}{\cyre}{\cyrl}{\cyri} {\cyrn}{\cyre}{\cyrs}{\cyrzh}{\cyri}{\cyrm}{\cyra}{\cyre}{\cyrm}{\cyro}{\cyrishrt} {\cyrp}{\cyro}{\cyrl}{\cyri}{\cyrm}{\cyre}{\cyrr}{\cyrn}{\cyro}{\cyrishrt} {\cyrzh}{\cyri}{\cyrd}{\cyrk}{\cyro}{\cyrs}{\cyrt}{\cyri} {\cyrv} {\cyrs}{\cyrl}{\cyru}{\cyrch}{\cyra}{\cyre} {\cyra}{\cyrb}{\cyrs}{\cyro}{\cyrl}{\cyryu}{\cyrt}{\cyrn}{\cyro}{\cyrishrt} {\cyrp}{\cyrr}{\cyro}{\cyrv}{\cyro}{\cyrd}{\cyri}{\cyrm}{\cyro}{\cyrs}{\cyrt}{\cyri}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {35--51},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2021_24_1_a1/}
}
TY  - JOUR
AU  - A. M. Blokhin
AU  - D. L. Tkachev
TI  - Линейная неустойчивость состояния покоя для МГД модели несжимаемой полимерной жидкости в случае абсолютной проводимости
JO  - Matematičeskie trudy
PY  - 2021
SP  - 35
EP  - 51
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2021_24_1_a1/
LA  - ru
ID  - MT_2021_24_1_a1
ER  - 
%0 Journal Article
%A A. M. Blokhin
%A D. L. Tkachev
%T Линейная неустойчивость состояния покоя для МГД модели несжимаемой полимерной жидкости в случае абсолютной проводимости
%J Matematičeskie trudy
%D 2021
%P 35-51
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2021_24_1_a1/
%G ru
%F MT_2021_24_1_a1
A. M. Blokhin; D. L. Tkachev. Линейная неустойчивость состояния покоя для МГД модели несжимаемой полимерной жидкости в случае абсолютной проводимости. Matematičeskie trudy, Tome 24 (2021) no. 1, pp. 35-51. http://geodesic.mathdoc.fr/item/MT_2021_24_1_a1/

[1] Altukhov Yu. A., Gusev A. S., Pyshnograi G. V., Vvedenie v mezoskopicheskuyu teoriyu tekuchikh polimernykh sistem, Alt. GPA, Barnaul, 2012

[2] Akhiezer A. I., Akhiezer I. A., Elektromagnetizm i elektromagnitnye volny, Vysshaya shkola, M., 1985

[3] Bai Shi-I, Vvedenie v teoriyu techeniya szhimaemoi zhidkosti, Izd-vo inostr. lit, M., 1962

[4] Blokhin A. M., Bambaeva N. V., “Statsionarnye resheniya uravnenii neszhimaemoi vyazkouprugoi polimernoi zhidkosti”, Zh. vychisl. matem. i matem. fiz., 54:5 (2014), 55–69

[5] Blokhin A. M., Goldin A. Yu., “K voprosu o lineinoi ustoichivosti sostoyaniya pokoya dlya neszhimaemoi polimernoi zhidkosti”, Sib. zh. chist. i prikl. matem., 16:4 (2016), 17–27 | Zbl

[6] Blokhin A. M., Egitov A. V., Tkachev D. L., “Lineinaya neustoichivost reshenii matematicheskoi modeli, opisyvayuschei techeniya polimerov v beskonechnom kanale”, Zh. vychisl. matem. i matem. fiz., 55:5 (2015), 850–875 | Zbl

[7] Blokhin A. M., Egitov A. V., Tkachev D. L., “Asimptotika spektra linearizovannoi problemy ustoichivosti statsionarnykh techenii neszhimaemoi polimernoi zhidkosti s ob'emnym zaryadom”, Zh. vychisl. matem. i matem. fiz., 58:1 (2018), 108–122 | MR | Zbl

[8] Blokhin A. M., Rudometova A. S., “Statsionarnye resheniya uravnenii, opisyvayuschikh neizotermicheskuyu elektrokonvektsiyu slaboprovodyaschei neszhimaemoi polimernoi zhidkosti”, Sib. zhurn. industr. matem., 18:1(61) (2015), 3–13 | Zbl

[9] Blokhin A. M., Semenko R. E., “Statsionarnye magnitogidrodinamicheskie techeniya neizotermicheskoi neszhimaemoi polimernoi zhidkosti v ploskom kanale”, Vestn. YuUrGU. Ser. Matem. modelir. i program., 11:4 (2018), 41–54 | MR | Zbl

[10] Blokhin A. M., Tkachev D. L., “Ustoichivost analoga techeniya Puazeilya v MGD modeli neszhimaemoi polimernoi zhidkosti”, Matem. sb., 211:7 (2020), 3–23 | MR | Zbl

[11] Blokhin A. M., Tkachev D. L., Egitov A. V., “Asimptoticheskaya formula dlya spektra lineinoi zadachi, opisyvayuschei periodicheskie techeniya polimernoi zhidkosti v beskonechnom ploskom kanale”, Prikl. mekh. i tekh. fiz., 59:6 (2018), 39–51 | Zbl

[12] Vatazhin A. B., Lyubimov G. A., Regirer S. A., Magnitogidrodinamicheskie techeniya v kanalakh, Nauka, M., 1970

[13] Koshelev K. B., Pyshnograi G. V., Kuznetsov A. E., Tolstykh M. Yu., “Zavisimost gidrodinamicheskikh kharakteristik techeniya polimernogo rasplava v skhodyaschemsya kanale ot temperatury”, Mekhan. kompozitsionnykh materialov i konstruktsii, 22:2 (2016), 175–191

[14] Lavrentev M. A., Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1973 | MR

[15] Landau L. D., Lifshits E. M., Elektrodinamika sploshnykh sred, Nauka, M., 1982 | MR

[16] Loitsyanskii L. G., Mekhanika zhidkosti i gaza, Nauka, M., 1978

[17] Nordling K., Osterman D., Spravochnik po fizike dlya uchenogo i inzhenera, BKhV-Peterburg, SPb., 2011

[18] Pyshnograi G. V., Pokrovskii V. N., Yanovskii Yu. G., Obraztsov I. F., Karnet Yu. N., “Opredelyayuschee uravnenie nelineinykh vyazkouprugikh (polimernykh) sred v nulevom priblizhenii po parametram molekulyarnoi teorii i sledstviya dlya sdviga i rastyazheniya”, DAN, 355:9 (1994), 612–615

[19] Sedov L. I., Mekhanika sploshnoi sredy, v. 1, Nauka, M., 1970

[20] Blokhin A. M., Tkachev D. L., “Stability of the Poiseuille-type flows for an MHD model of an incompressible polymeric fluid”, J. Hyperbolic Differ. Equ., 16:4 (2019), 793–817 | DOI | MR | Zbl

[21] Blokhin A. M., Tkachev D. L., “Stability of Poiseuille-type flows for an MHD model of an incompressible polymeric fluid”, Fluid Dynam., 54:8 (2019), 1051–1058 | DOI | MR | Zbl

[22] Blokhin A. M., Tkachev D. L., “Stability of the Poiseuille-type flow for an MHD model of an incompressible polymeric fluid”, Eur. J. Mech. B Fluids, 80 (2020), 112–121 | DOI | MR | Zbl

[23] Blokhin A., Tkachev D., Yegitov A., “Spectral asymptotics of a linearized problem for an incompressible weakly conducting polymeric fluid”, ZAMM (Z. Angrew. Math. Mech.), 98:4 (2018), 589–601 | DOI | MR

[24] Grenier E., Guo Y., Nguyen T. T., “Spectral instability of characteristic boundary layer flows”, Duke Math. J., 165:16 (2016), 3085–3146 | DOI | MR | Zbl

[25] Pokrovskii V. N., The Mesoscopic Theory of Polymer Dynamics, 2nd ed., Springer, London–New York–Dordrecht, 2010

[26] Shibata Y., “On the R-boundedness for the two phase problem with phase transition: compressible-incompressible model problem”, Funkcial. Ekvac., 59 (2016), 243–287 | DOI | MR | Zbl