Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MT_2020_23_1_a5, author = {I. A. Zubareva}, title = {{\CYRO} {\cyrs}{\cyrt}{\cyra}{\cyrn}{\cyrd}{\cyra}{\cyrr}{\cyrt}{\cyrn}{\cyrery}{\cyrh} {\cyrp}{\cyru}{\cyrt}{\cyrya}{\cyrh} {\cyrs} {\cyrp}{\cyro}{\cyrs}{\cyrt}{\cyro}{\cyrya}{\cyrn}{\cyrn}{\cyrery}{\cyrm}{\cyri} {\cyrv}{\cyrn}{\cyru}{\cyrt}{\cyrr}{\cyre}{\cyrn}{\cyrn}{\cyri}{\cyrm}{\cyri} {\cyrk}{\cyrr}{\cyri}{\cyrv}{\cyri}{\cyrz}{\cyrn}{\cyra}{\cyrm}{\cyri} {\cyrn}{\cyra} {\cyrs}{\cyrf}{\cyre}{\cyrr}{\cyra}{\cyrh} {\cyrp}{\cyrs}{\cyre}{\cyrv}{\cyrd}{\cyro}{\cyre}{\cyrv}{\cyrk}{\cyrl}{\cyri}{\cyrd}{\cyro}{\cyrv}{\cyra} {\cyrp}{\cyrr}{\cyro}{\cyrs}{\cyrt}{\cyrr}{\cyra}{\cyrn}{\cyrs}{\cyrt}{\cyrv}{\cyra}}, journal = {Matemati\v{c}eskie trudy}, pages = {137--149}, publisher = {mathdoc}, volume = {23}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MT_2020_23_1_a5/} }
TY - JOUR AU - I. A. Zubareva TI - О стандартных путях с постоянными внутренними кривизнами на сферах псевдоевклидова пространства JO - Matematičeskie trudy PY - 2020 SP - 137 EP - 149 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MT_2020_23_1_a5/ LA - ru ID - MT_2020_23_1_a5 ER -
I. A. Zubareva. О стандартных путях с постоянными внутренними кривизнами на сферах псевдоевклидова пространства. Matematičeskie trudy, Tome 23 (2020) no. 1, pp. 137-149. http://geodesic.mathdoc.fr/item/MT_2020_23_1_a5/
[1] Aminov Yu. A., Differentsialnaya geometriya i topologiya krivykh, Nauka, M., 1987
[2] Borisov Yu. F., “Snyatie apriornykh ogranichenii v teoreme o polnoi sisteme invariantov krivoi v ${\mathbb E}^n_l$”, Sib. matem. zhurn., 38:3 (1997), 485–503 | MR | Zbl
[3] Zubareva I. A., “O krivykh s postoyannymi kriviznami v psevdoevklidovom prostranstve”, Matem. struktury i modelir., 46:2 (2018), 21–26
[4] Sizyi S. V., Lektsii po differentsialnoi geometrii, Fizmatlit, M., 2007
[5] Sulanke R., “The Fundamental Theorem for Curves in the $n$-Dimensional Euclidean Space”, Euclidean Curve Theory, Mathematica Notebook, 2009 http://www-irm.mathematik.hu-berlin.de/s̃ulanke/diffgeo/euklid/ECTh.pdf