Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MT_2019_22_2_a6, author = {A. A. Mogul'skiǐ and E. I. Prokopenko}, title = {Local theorems for arithmetic multidimensional compound renewal processes under {Cram{\'e}r's} condition}, journal = {Matemati\v{c}eskie trudy}, pages = {106--133}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MT_2019_22_2_a6/} }
TY - JOUR AU - A. A. Mogul'skiǐ AU - E. I. Prokopenko TI - Local theorems for arithmetic multidimensional compound renewal processes under Cram{\'e}r's condition JO - Matematičeskie trudy PY - 2019 SP - 106 EP - 133 VL - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MT_2019_22_2_a6/ LA - ru ID - MT_2019_22_2_a6 ER -
%0 Journal Article %A A. A. Mogul'skiǐ %A E. I. Prokopenko %T Local theorems for arithmetic multidimensional compound renewal processes under Cram{\'e}r's condition %J Matematičeskie trudy %D 2019 %P 106-133 %V 22 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MT_2019_22_2_a6/ %G ru %F MT_2019_22_2_a6
A. A. Mogul'skiǐ; E. I. Prokopenko. Local theorems for arithmetic multidimensional compound renewal processes under Cram{\'e}r's condition. Matematičeskie trudy, Tome 22 (2019) no. 2, pp. 106-133. http://geodesic.mathdoc.fr/item/MT_2019_22_2_a6/
[1] Borovkov A. A., Asimptoticheskii analiz sluchainykh bluzhdanii. Bystro ubyvayuschie raspredeleniya priraschenii, Fizmatlit, M., 2013
[2] Borovkov A. A., “Printsipy bolshikh uklonenii v granichnykh zadachakh dlya obobschennykh protsessov vosstanovleniya”, Sib. matem. zhurn., 57:3 (2016), 562–595 | MR | Zbl
[3] Borovkov A. A., Mogulskii A. A., “Vtoraya funktsiya uklonenii i asimptoticheskie zadachi vosstanovleniya i dostizheniya granitsy dlya mnogomernykh bluzhdanii”, Sib. matem. zhurn., 37:4 (1996), 745–782 | MR | Zbl
[4] Borovkov A. A., Mogulskii A. A., “Eksponentsialnye neravenstva chebyshevskogo tipa dlya summ sluchainykh vektorov i dlya sluchainykh bluzhdanii”, TVP, 56:1 (2011), 3–29 | DOI | MR
[5] Borovkov A. A., Mogulskii A. A., “Printsipy bolshikh uklonenii dlya konechnomernykh raspredelenii obobschennykh protsessov vosstanovleniya”, Sib. matem. zhurn., 56:1 (2015), 36–64 | MR | Zbl
[6] Borovkov A. A., Mogulskii A. A., “Printsipy bolshikh uklonenii dlya traektorii obobschennykh protsessov vosstanovleniya. I”, TVP, 60:2 (2015), 227–247 | DOI | MR
[7] Borovkov A. A., Mogulskii A. A., “Printsipy bolshikh uklonenii dlya traektorii obobschennykh protsessov vosstanovleniya. II”, TVP, 60:3 (2015), 417–438 | DOI
[8] Borovkov A. A., Mogulskii A. A., “Integro-lokalnye predelnye teoremy dlya obobschennykh protsessov vosstanovleniya pri vypolnenii usloviya Kramera. I”, Sib. matem. zhurn., 59:3 (2018), 491–513 | MR | Zbl
[9] Borovkov A. A., Mogulskii A. A., “Integro-lokalnye predelnye teoremy dlya obobschennykh protsessov vosstanovleniya pri vypolnenii usloviya Kramera. II”, Sib. matem. zhurn., 59:4 (2018), 736–758 | MR | Zbl
[10] Koks D. R., Smit V. L., Teoriya vosstanovleniya, Izd-vo «Sovetskoe radio», M., 1967 | MR
[11] Mogulskii A. A., “Lokalnye teoremy dlya arifmeticheskikh obobschennykh protsessov vosstanovleniya pri vypolnenii usloviya Kramera”, Sib. elektron. matem. izv., 16 (2019), 21–40
[12] Mogulskii A. A., Prokopenko E. I., “Integro-lokalnye predelnye teoremy dlya mnogomernykh obobschennykh protsessov vosstanovleniya pri momentnom usloviya Kramera. I”, Sib. elektron. matem. izv., 15 (2018), 475–502 | Zbl
[13] Mogulskii A. A., Prokopenko E. I., “Integro-lokalnye predelnye teoremy dlya mnogomernykh obobschennykh protsessov vosstanovleniya pri momentnom usloviya Kramera. II”, Sib. elektron. matem. izv., 15 (2018), 503–527 | Zbl
[14] Mogulskii A. A., Prokopenko E. I., “Integro-lokalnye predelnye teoremy dlya mnogomernykh obobschennykh protsessov vosstanovleniya pri momentnom usloviya Kramera. III”, Sib. elektron. matem. izv., 15 (2018), 528–553 | Zbl
[15] Mogulskii A. A., Prokopenko E. I., “Funktsiya uklonenii i bazovaya funktsiya dlya mnogomernogo obobschennogo protsessa vosstanovleniya”, Sib. elektron. matem. izv., 16 (2019), 1449–1463 | Zbl
[16] Asmussen S., Albrecher H., Ruin Probabilities, 2nd ed., World Scientific, Hackensack, NJ, 2010 | MR | Zbl