On groups carrying homogeneous weakened pregeometries
Matematičeskie trudy, Tome 22 (2019) no. 2, pp. 90-105.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the question on the existence and properties of groups carrying homogeneous weakened pregeometries.
@article{MT_2019_22_2_a5,
     author = {K. Zh. Kudaǐbergenov},
     title = {On groups carrying homogeneous weakened pregeometries},
     journal = {Matemati\v{c}eskie trudy},
     pages = {90--105},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2019_22_2_a5/}
}
TY  - JOUR
AU  - K. Zh. Kudaǐbergenov
TI  - On groups carrying homogeneous weakened pregeometries
JO  - Matematičeskie trudy
PY  - 2019
SP  - 90
EP  - 105
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2019_22_2_a5/
LA  - ru
ID  - MT_2019_22_2_a5
ER  - 
%0 Journal Article
%A K. Zh. Kudaǐbergenov
%T On groups carrying homogeneous weakened pregeometries
%J Matematičeskie trudy
%D 2019
%P 90-105
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2019_22_2_a5/
%G ru
%F MT_2019_22_2_a5
K. Zh. Kudaǐbergenov. On groups carrying homogeneous weakened pregeometries. Matematičeskie trudy, Tome 22 (2019) no. 2, pp. 90-105. http://geodesic.mathdoc.fr/item/MT_2019_22_2_a5/

[1] Iekh T., Teoriya mnozhestv i metod forsinga, Mir, M., 1973

[2] Lindon R., Shupp P., Kombinatornaya teoriya grupp, Mir, M., 1980

[3] Hyttinen T., Lessmann O., Shelah S., “Interpreting groups and fields in some nonelementary classes”, J. Math. Logic, 5:1 (2005), 1–47 | DOI | MR | Zbl

[4] Pillay A., Geometric Stability Theory, Clarendon Press, Oxford, 1996 | MR | Zbl

[5] Shelah S., Classification Theory and the Number of Nonisomorphic Models, Studies in Logic and the Foundations of Mathematics, 92, North-Holland Publishing Co., Amsterdam–New York, 1978 | MR